
  

  

Abstract—This work examines support vector machine 

(SVM) classification of complex fMRI data, both in the image 

domain and in the acquired k-space data.  We achieve high 

classification accuracy using the magnitude data in both 

domains.  Additionally, we maintain high classification 

accuracy even when using only partial k-space data.  Thus we 

demonstrate the feasibility of using kspace data for 

classification, enabling rapid realtime acquisition and 

classification. 

I. INTRODUCTION 

Pattern classification techniques offer a new way of 

analyzing imaging data. These methods have been applied in 

MR imaging using support vector machines (SVM) [1], and 

have been used to attain real-time feedback [2].  So far, these 

techniques have been applied in image space.  This study 

explores applying SVM techniques directly on the acquired 

k-space data.  

II. METHODS 

A. MR data acquisition 

Data were acquired for four subjects on a 3 T GE scanner.  

T2*-weighted data was acquired using a spiral-in sequence 

(TR/TE/FA/FOV=2s/30ms/90/22cm, 64x64 matrix, 3mm 

slice thickness).  A motor task paradigm was used, with 

alternating blocks of left and right hand finger tapping (20 s 

each condition per cycle, 8 cycles total, 320 s total time). 

Forty axial slices were prescribed, and two runs were 

acquired. 

B. fMRI Classification with Support Vector Machines 

As described in [1] classification algorithms attempt to 

find a decision rule that uses an input vector, u
r

, to obtain a 

scalar-valued output class label, v . When there are two 

classes (which is the case considered in this work), the class 

label can take two values { }1,1 +��v . The process of 

estimating the decision rule is called induction or supervised 

learning, and uses a training data set { }
Rrrr vu

,1
,

=

r
 with a 

finite number of examples, R. Once the decision rule is 
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determined, test data, consisting of input vectors can be 

classified by their output values. 

The support vector machine (SVM) is one method for 

classification used in recent fMRI studies [1-2]. For two 

classes, the SVM algorithm attempts to find a linear decision 

boundary (separating hyperplane) using the decision 

function 

 

0)()( wuwuD rr +�=
rrr

,    (1)  

 

where w
r

 defines the linear decision boundary, and is 

chosen to maximize the boundaries defined by D = +1 and D 

= -1 (known as the margin) between the two class 

distributions.  

For fMRI, brain state classification uses the experimental 

design as the class label (e.g. stimulus A and stimulus B are 

assigned unique classes) and an experiment consists of a 

series of brain images being collected while class labels are 

changed. The classifier’s input vector consists of an 

appropriate representation of the spatiotemporal image data. 

In this situation, we have labeled data.  

For block design data, it is possible to represent each 

image as an input vector u
r

, as described in [1-2] where the 

vector components are the intensity values for each brain 

voxel at the acquisition time. The experimental condition 

(behavioral state) associated with each u
r

 defines the class 

label, v . Note that the training data and testing data are 

assumed to be spatially and temporally aligned and have the 

same dimensionality. 

C. Complex kernel approach 

For complex valued data, our approach was use the 

complex dot product 
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N

�
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where N is the number of voxels in the complex image u
r

, 

and 
*u   denotes the complex-conjugate. 

Summary maps for complex-valued input data were 

obtained by the direct visualization of the weight vector as 

described in [1]. Given complex-valued input vectors several 

maps are possible: 
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of the weight vector w
r

. Here, t�  are the real-valued 

experimental design values (data labels), and � t  are the 

real-valued Lagrange multipliers solving the SVM problem. 

D. Implementation and data analysis 

Both SVM training and testing were done using the 3dsvm 

command [1] in AFNI [3]. For classification of complex-

valued input data, the capabilities of 3dsvm were extended 

to perform classification with a complex kernel as described 

in the previous section. Classification was performed on run 

2 using run 1 as a training data set, and vice versa, and the 

two accuracy estimates were averaged. Specifically, percent 

classification accuracy was calculated as [(number of 

correctly classified images)/(total number of images) � 100]. 

Classification was done on the magnitude, phase, and 

complex data in both image space and k-space. In addition, 

the dependence on k-space coverage was investigated by 

examining the classification accuracy when using subsets of 

magnitude k-space. 

III. RESULTS 

 Figure 1 displays the SVM model weights using the 

magnitude image data for six slices covering the primary 

motor cortex.  As expected, the significant model weights 

are located in the primary motor and supplementary motor 

cortex. 

 

Figure 2 shows the significant model weights using 

magnitude k-space data, for the six motor slices.  Figure 3 

displays all the model weights plotted on the spiral 

trajectory.  More significant model weights are located in 

centrally in k-space. 

 

The SVM classification results are shown in Table I and 

Figure 4. Classification using the image magnitude or k-

space magnitude data was very high (98% and 87% , 

respectively, averaged over both train-test permutations).   

The results using the full-kspace (blue) or only the central 8
th

 

of k-space (green) are very similar, with high classification 

accuracy (87%, 86%), but the accuracy and sensitivity is 

degraded when using the outer 8
th

 of k-space (red, 75% 

accuracy). In addition, the classification accuracy is 

degraded when using the complex image data (65%). 

IV. DISCUSSION 

The accuracy was very high in both magnitude k-space 

and image data. Thus, using k-space data for fMRI 

classification is feasible, eliminating the need for image 

reconstruction.  This can allow for speed-ups in realtime 

fMRI (rtfMRI) applications. 

 

The decreased accuracy in the complex data could be due 

to noise present in the phase data.  Two main sources for this 

are drifts in the field over time, and modulation of the phase 

due to physiological noise (particularly respiration). It is 

important to also note that no preprocessing was performed 

on these data for this study. In general, we expect classifier 

performance could be improved by correcting for motion 

and physiological noise. Further work will be done to 

examine the impact of preprocessing choices on complex-

valued fMRI classification. 

 

The ability to achieve high classification accuracy with 

only partial k-space coverage can enable faster acquisition 

approaches.  By sacrificing spatial resolution, increased 

temporal resolution can be obtained. We will investigate 

these tradeoffs in ongoing work. 

V. CONCLUSIONS 

High classification accuracy was obtained using 

magnitude image and k-space data.  In addition, reduced k-

space coverage covering central k-space maintained a high 

level of accuracy.  This can potentially enable rapid real-

time classification, without the need for image 

reconstruction. 

REFERENCES 

[1] S.M. LaConte, S. Strother, V. Cherkassky, X.P. Hu. NeuroImage, vol 

26, pp. 317-329, 2005. 

[2] S.M. LaConte, S.J. Peltier, and X.P. Hu, X.P. (2007),  “Real-time 

fMRI using brain state classification,” Human Brain Mapping, vol. 

28, pp. 1033-44, 2009. 

[3] R.W. Cox. (1996) “AFNI: software for analysis and visualization of 

funtional magnetic resonance neruoimages,” Comp. and Biomed. Res, 

vol. 29, pp. 162-173, 1996. 

 

 

5382



  

Fig. 1. SVM classification output for the magnitude image data, using alternating right-hand (blue) and left-hand 

(orange) finger tapping. 

 

 
 

 

Fig. 3.  SVM classification model weights for each k-space point in the spiral acquisition. 

Fig. 2. SVM classification output for the magnitude k-space data, using alternating right-hand (blue) and left-hand 

(red) finger tapping. 

Image Image Image K-space K-space K-space Mag. K-space Mag. K-space

Subject Magnitude Phase Complex Magnitude Phase Complex Inner 8th Outer 8th

1 0.98 0.53 0.93 0.98 0.66 0.91 0.98 0.74

2 0.95 0.59 0.92 0.92 0.72 0.9 0.83 0.67

3 0.93 0.59 0.89 0.91 0.69 0.81 0.93 0.63

4 0.96 0.63 0.94 0.97 0.69 0.9 0.96 0.65

TABLE I.  SVM Classification Results
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Fig. 4. SVM classification results for a typical subject (1 for left, 0 for right). 

(Blue) Magnitude image, (Red) Magnitude k-space, (Green) Magnitude k-space - central 8
th

, (Black) Magnitude 

k-space - outer 8
th

. 
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