
  

  

Abstract—In the present paper, an electroencephalography 
(EEG)-based real-time dynamic neuroimaging system, which 
was recently developed by the authors, is introduced and its 
potential applications are presented. The real-time system could 
monitor spatiotemporal changes of cortical rhythmic activity on 
a subject’s cortical surface, not on the subject’s scalp surface, 
with a high temporal resolution. The developed system can be 
potentially applied to various practical applications such as 
neurofeedback based motor imagery training, real-time 
diagnosis of psychiatric brain diseases, online monitoring of 
EEG experiments, and neurorehabilitation, of which some 
examples are presented herein. 

I. INTRODUCTION 
ECENTLY, an increasing number of neuroscientists are 
becoming interested in the cortical rhythmic activity 

since various in-vivo studies in both humans and animals 
have revealed that cortical rhythmic activity at various 
frequencies might be closely related to information encoding 
in brain [1-7]. For instance, cortical rhythmic activity might 
reflect specific body movements and behavioral states. The 
alpha rhythm peaking at around 10 Hz becomes strongest 
when the subject has his eyes closed and is suppressed when 
the subject is exposed to visual stimuli [1]. The mu rhythm, 
with both 10 Hz and 20 Hz components, is dampened by limb 
movements or tactile stimulations [2]. It has been also 
revealed by numerous studies [3-5] that gamma-band activity 
(30 – 100 Hz) can be modulated by various behavioral states 
such as attention, working memory, and associative memory. 
Moreover, changes of cortical rhythmic activity are believed 
to be involved in various brain diseases such as schizophrenia 
[6] and Alzheimer’s disease [7]. 

EEG and MEG are excellent tools to investigate the human 
cortical rhythmic activity noninvasively thanks to their 
superior temporal resolutions to the other noninvasive brain 
mapping techniques such as functional magnetic resonance 
imaging (fMRI), positron emission tomography (PET), near 
infra-red spectroscopy (NIRS), and so on. Many studies have 
been performed to evaluate coherence between signals 
acquired at different scalp EEG electrodes or MEG sensors, 
and investigate spatial signal power patterns appearing in the 
scalp potential maps or magnetic field maps on the sensor 
plane [1–7]. However, the EEG or MEG topographies cannot 
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be directly attributed to the underlying cortical regions since 
sensors may contain information from multiple brain sources, 
some of which might overlap, and the topographic maps 
might be distorted due to the inhomogeneous conductivity 
distributions in the human head. A deep tangential source 
might generate two distinct peaks on the topographic map, 
which are hard to be distinguished from two radial sources 
around the peak locations. Moreover, a very small cortical 
activation in some cortical areas could yield widespread field 
distribution in the topographic maps, preventing one from 
identifying correct location of the actual cortical source and 
investigating coherence between different sensors. Therefore, 
to overcome these limitations, source imaging of rhythmic 
activity at the cortical level is necessary. 

In the previous study of our research group, we introduced 
a real-time cortical rhythmic activity monitoring system, 
which we call a real-time dynamic neuroimaging system 
hereafter [8]. The real-time dynamic neuroimaging system 
could visualize spatiotemporal changes of cortical rhythmic 
activity of a specific frequency band on a subject’s cortical 
surface, rather than the subject’s scalp surface, with a high 
temporal resolution. More recently, it was successfully 
applied to a motor imagery training system that can help 
individuals easily get the feel of motor imagery tasks [9]. 

In the present article, we first review the concepts of the 
real-time dynamic neuroimaging system briefly, and then 
present its potential applications with some examples. 

II. EEG-BASED REAL-TIME DYNAMIC NEUROIMAGING 
An EEG-based real-time dynamic neuroimaging system 

[8] consisted of pre-processing and real-time processing parts. 
In the pre-processing part, a linear inverse operator was 
constructed in which the subject’s anatomical information 
was reflected. Once the linear inverse operator had been 
constructed and saved to a data-storage unit, spatiotemporal 
changes of cortical rhythmic activities were monitored in 
real-time by means of a unified processing scheme consisting 
of three independent programs: an FFT program, a frequency 
domain minimum norm estimation (FD-MNE) solver [8], and 
a 3D visualization program, which were executed 
sequentially at each time slice. 

To reconstruct the cortically distributed brain sources, we 
used a linear estimation approach. The expression for the 
inverse operator W is 

 
W = RAT (ARAT + λ2 C)-1,                          (1) 

where A is a lead field matrix, R is a source covariance matrix, 
and C is a noise covariance matrix. Once a specific frequency 
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band is determined, the FFT program calculates real and 
imaginary components at all discrete frequencies within the 
predetermined frequency band. Then, the FD-MNE solver is 
executed and load the Fourier transformed signals B(fi)Re and 
B(fi)Im, i = 1, 2, …, n, where Re and Im represent real and 
imaginary part of the Fourier transformed signals, 
respectively, as well as the pre-saved inverse operator W. The 
real part qj(fi)Re and imaginary part qj(fi)Im of the current 
source vector at j-th cortical vertex with respect to the 
frequency of interest fi can then be evaluated by multiplying 
the corresponding rows (3j-2, 3j-1, and 3jth rows) in W with 
the Fourier transformed signals B(fi)Re and B(fi)Im. Finally, the 
absolute current source power at j-th cortical vertex with 
respect to the frequency band of interest is calculated as 
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After the current source power at every cortical vertex is 

calculated, a 3D visualization program is executed and 
visualizes the resultant source distribution at a given 
frequency band. 

In the earliest pilot system reported in [8], the cortical 
activation maps could be visualized with a maximal delay 
time of 200 ms, when 18 channel EEG data are analyzed 
under Pentium4 3.4GHz environment. Thanks to the rapid 
development of computer systems and our team’s efforts, the 
delay time is now reduced to be less than 100 ms (90 EEG 
electrodes are assumed, Intel Core2-6300 1.86 GHz). 

Figs. 1(a) and 1(b) show the cortical alpha (8-13 Hz) 
activity changes when a subject (YJ, male, age 26) opened 
and closed his eyes and the cortical mu (8-12 Hz) activity 
changes when a subject (JJ, male, age 23) raised his left and 
right hand, respectively (experimental conditions: 16 EEG 
electrodes, 256 Hz sampling rate, FFT for 128 data samples, 4 
image frames per second).  

 

   
 

(a) 
 

  
 

(b) 
 

Fig. 1. Examples of our preliminary experiments: (a) cortical alpha activity 
imaging; (b) cortical mu activity imaging (modified from [8]).  

III. APPLICATIONS OF REAL-TIME NEUROIMAGING 

A. A Motor Imagery Training System for BCI 
Brain activities modulated by motor imagery of either the 

left or right hand are regarded as good features for brain- 
computer interfaces (BCIs), because such activities are 
readily reproducible and show consistent EEG patterns on the 
sensorimotor cortical areas [10, 11] Moreover, thanks to the 
contralateral localization of the oscillatory activity, the 
activities evoked from left and right hand motor imagery are, 
comparatively, readily discriminated [12]. However, many 
individuals have difficulty in getting used to the feel of motor 
imagery, since most people do not easily recognize how they 
can have a concrete feeling of motor imagery and tend to 
imagine the images of moving their hands or legs instead [13]. 
Therefore, one of the challenging issues in the EEG-based 
BCI studies has been how one can efficiently train individuals 
to perform motor imagery tasks. 

In our recent study [9], we proposed a neurofeedback- 
based motor imagery training system for EEG-based BCI, 
based on the real-time dynamic neuroimaging. The proposed 
system could help individuals get the feel of motor imagery 
by presenting them with real-time brain activation maps on 
their cortex. Ten healthy participants took part in our 
experiment, half of whom were trained by the suggested 
training system and the others did not use any training. All 
participants in the trained group succeeded in performing 
motor imagery after a series of trials to activate their motor 
cortex without any physical movements of their limbs. To 
confirm the effect of the suggested system, we recorded EEG 
signals for the trained group around sensorimotor cortex 
while they were imagining either left or right hand 
movements according to our experimental design, before and 
after the motor imagery training. For the control group, we 
also recorded EEG signals twice without any training 
sessions. The participants’ intentions were then classified 
using a time-frequency analysis technique, and the results of 
the trained group showed significant differences in the 
sensorimotor rhythms between the signals recorded before 
and after training. Classification accuracy was also enhanced 
considerably in all participants after motor imagery training 
(from 58.8% to 71.4%), compared to the accuracy before 
training. On the other hand, the analysis results for the control 
EEG data set did not show consistent increment in both the 
number of meaningful time-frequency combinations and the 
classification accuracy, demonstrating that the suggested 
system can be used as a tool for training motor imagery tasks 
in BCI applications. 

Fig. 2 shows the screenshots of real-time cortical mu- 
rhythm activity monitoring, taken while a subject (EK, male, 
age 23) was attempting to generate cortical activations around 
his sensorimotor cortex by imagining his left or right hand 
movement (supplementary movie is also included in the 
article [9], experimental conditions: 16 EEG electrodes, 256 
Hz sampling rate, 4 image frames per second). 
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Fig. 2. Screenshots of real-time cortical mu-rhythm activity (8-12 Hz) 
monitoring (adapted from [9]): Cortical activation maps at rest state (left) and 
when the participant was performing motor imagery (right). 
 

B. Real-time Cortical Functional Connectivity Monitoring 
Based on the real-time dynamic neuroimaging system, we 

recently developed a real-time cortical functional 
connectivity monitoring system, which can monitor and trace 
temporal changes of cortical connectivity between different 
regions of interest (ROIs) on the subject’s cortical surface. To 
verify the implemented system, we monitored the changes of 
cortical functional connectivity patterns while presenting 
three subjects with images of various human faces. We 
quantified the changes of the number of meaningful 
connections of which the phase difference between two ROIs 
is less than a threshold value (empirically determined in this 
pilot study). 

Fig. 3 shows the screenshot of the experiment and the 
operating software. 100 facial images of famous Koreans 
were randomly presented to three male volunteers (ages 22, 
24, and 26, experimental conditions: 32 EEG electrodes, 256 
Hz sampling rate, 5 updates per second) and the number of 
the functional connectivity connections was counted at each 
time slice. 12 ROIs were manually assigned on the inflated 
cortical surface (see Fig. 4a) and the phase difference 
between each pair of ROIs was evaluated at the frequency of 
30 Hz. Figs. 4(a) and 4(b) show the distribution of ROIs and 
the cortical connectivity patterns before and after presenting 
the pictures, respectively, which were captured during the 
online experiment. The average number of the connectivity 
connections during 1s after presenting the face images was 
3.5, 4.5, and 4.8 times more than that of the connectivity 
connections during 1s before presenting the images. Since the 
gamma band phase synchronization between different brain 
areas during the processing of facial structure was 
significantly reduced in most schizophrenia patients, 
according to our previous study [14], we are expecting that 
this new system can possibly be used to the real-time 
diagnosis of schizophrenia or Alzheimer’s disease, after 
conducting more clinical examinations.  
 

 
 
Fig. 3. A real-time cortical functional connectivity monitoring system: 
Experimental environment (left) and operating software (right). 100 
grayscale face images were randomly presented to the volunteered subjects. 
 

 
(a) 

 

 
(b) 

 
Fig. 4. An example of real-time cortical functional connectivity monitoring: 
(a) distribution of ROIs (sets of colored dots represent each ROI); (b) the 
cortical connectivity patterns before (upper three figures) and after (lower 
three figures) presenting the facial images. 
 

C. Other Potential Applications 
Currently, we are attempting to apply the real-time 

neuroimaging system to other potential applications.  
The developed system can be potentially used in some 

neurorehabilitation applications. For example, stroke patients 
who need rehabilitative training for motor recovery of his 
paralyzed right upper limb tend to move his normal side (i.e. 
left upper limb) during the training processes, generally 
decreasing the training efficiency. Since the mu-rhythm 
activity on the patients’ motor cortex can be monitored using 
our real-time system, the trainer can provide them with an 
appropriate instruction immediately. Fig. 5 shows an example 
of mu-rhythm activation changes on a subject’s motor cortex 
(KS, male, age 23) recorded while he was moving his left and 
right hand by turns (experimental conditions: 32 EEG 
electrodes, 256 Hz sampling rate, 5 image frames per second). 
We are expecting that our system can also be used to quantify 
the degree of motor recovery after the rehabilitative training. 
We hope that we can present clinical results at the conference. 
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The real-time neuroimaging system can also be used for 
online monitoring of EEG experiments regarding various 
cognitive and functional brain studies. The experimenter can 
modify the experimental protocols without stopping the 
on-going measurement with the aid of our system. For 
example, the experimenter can monitor if the subject falls into 
a doze, simply watching the cortical alpha activation changes 
(e.g. see Fig. 6). 

Another possible application of the real-time cortical 
activation monitoring system is the EEG-based brain 
computer interface (BCI) system. Although such a system has 
not been realized yet, offline simulation studies demonstrated 
that the use of inverse solutions can enhance the classification 
capability of the EEG-based BCI system [15].  
 

 
 
Fig. 5. Mu-rhythm activation changes on a subject’s motor cortex recorded 
while he was moving his left and right hand by turns. 
 

 
 
Fig. 6. An example of sequential cortical source images (5 frames per second) 
acquired during an EEG experiment. 

IV. CONCLUSIONS 
In the present article, an EEG-based real-time dynamic 

neuroimaging system, which can monitor spatiotemporal 
changes of cortical rhythmic activity on a subject’s cortical 
surface, was introduced. The developed real-time dynamic 
neuroimaging system was applied to some applications such 
as neurofeedback based motor imagery training, cortical 
functional connectivity monitoring, neurorehabilitation, etc. 
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