
fMRI activation pattern recognition: A novel application of PCA in

Language Network of Pediatric Localization Related Epilepsy

Xiaozhen You, Magno Guillen, Byron Bernal, William D. Gaillard, Malek Adjouadi

Abstract— In this study, a novel application of Principal
Component Analysis (PCA) is proposed to detect language
activation map patterns. These activation patterns were ob-
tained by processing functional Magnetic Resonance Imaging
(fMRI) studies on both control and localization related epilepsy
(LRE) patients as they performed an auditory word definition
task. Most group statistical analyses of fMRI datasets look for
“commonality” under the assumption of the homogeneity of
the sample. However, inter-subject variance may be expected to
increase in large “normal” or otherwise heterogeneous patient
groups. In such cases, certain different patterns may share a
common feature, comprising of small categorical sub-groups
otherwise hidden within the main pooling statistical procedure.
These variant patterns may be of importance both in normal
and patient groups. fMRI atypical-language patterns can be
separated by qualitative visual inspection or by means of
Laterality Indices (LI) based on region of interest. LI is a
coefficient related to the asymmetry of distribution of activated
voxels with respect to the midline and it lacks specific spatial
and graphical information. We describe a mathematical and
computational method for the automatic discrimination of vari-
ant spatial patterns of fMRI activation in a mixed population of
control subjects and LRE patients. Unique in this study is the
provision of a data-driven mechanism to automatically extract
brain activation patterns from a heterogeneous population.
This method will lead to automatic self-clustering of the data-
sets provided by different institutions often with different
acquisition parameters.

I. INTRODUCTION

Through Functional Magnetic Resonance Imaging (fMRI)

it is possible to produce brain activity patterns that represent

the execution of a given task, such as the Auditory Decision

Description Task (ADDT). This language paradigm is used

in this study. Several investigators have described reorgani-

zation of language networks from canonical areas to distinct

locations either in the same or contra lateral hemisphere due

to the effect of structural lesions (e.g. stroke) or functional

processes (e.g. epilepsy) [1]–[3]. Typical language regions
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include Broca’s and Wernicke’s areas. Atypical fMRI acti-

vation patterns were defined as those cases in which brain

activation found in one or two regions is right or bilateral;

left dominance is considered typical if both regions are left,

or one left and the other bilateral or non-canonical [4]–[6].

Most group statistical analyses of fMRI datasets look for

“commonality” under the assumption of the homogeneity of

the sample, or use control group as standard by excluding

healthy controls with atypical dominance [7]. However,

inter-subject variance may be expected to increase in large

“normal” or otherwise heterogeneous patient groups.

In this paper we develop an objective PCA-based data-

driven method to segregate populations, without selecting

region of interest(ROI) or normalizing the Z-score range,

seeking distinct language activation patterns among the het-

erogeneous group that might be associated with normal

variant and LRE pathological variant conditions, which may

help to study brain changes that reflect brain plasticity [1]–

[3], and also improve our understanding about the language

compensation mechanism by associating clinical variables

with these distinct activation patterns, such as seizure foci

location, age of epilepsy onset. PCA enables computation

of a linear transformation that maps data from a high

dimensional space to a lower dimensional orthogonal space

that maximize variability [8]. One advantage of the PCA

is that it is a data-driven method as opposed to regular

(ROI) methods that are based on prior assumptions, and to

subjective visual methods that are prone to bias.

II. METHODS

Our university in collaboration with several pediatric

hospitals with established epilepsy programs, developed a

multisite repository for control and pediatric epilepsy data to

facilitate fMRI group studies in LRE patients. The long term

goal is to obtain data from a large group of patients in order

to characterize subtypes of the heterogeneous expression

of atypical language networks and relate them to clinical

variables such as age of brain injury, age of epilepsy onset,

underlying etiology, and location of seizure focus.

A. Data Collection

At the current stage this research endeavor, 133 fMRI

datasets with 11 null activation datasets have bee processed.

Data sets from 64 control and 58 children with LRE (patient

population) were thus included in this study (see Table I).

Control subjects were required to be right handed and free

of any current or past neurological or psychiatric disease.

Each subject was asked to perform a word definition task.
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TABLE I

PATIENT AND SUBJECT DISTRIBUTION BY INSTITUTION AND

SCANNER TYPE *

Subjects Inst. Scanner TR Num

Hospital for Sick Children, GE 2 19

Toronto , Canada 1.5 T

Miami Children’s Hospital, Phillips 2 10

Miami,FL Intera 1.5 T

LRE Children’s National Medical Siemens 2 14

Center,Washington,DC Trio 3 T

BC Children’s Hospital, Siemens 3 4

Vancouver, Canada Avanto 1.5 T

Children’s Hospital of Siemens 3 11

Philadelphia,PA Trio 3 T

Control Children’s National Medical Siemens 3 64

Center,Washington,DC Trio 3 T

* No-activation cases were not taken into account

During the “on” period, the participant listened to a defi-

nition of an object followed by a noun. Participants were

instructed to press a button each time they judged that the

description matched the noun. During the “off” period,the

subject listened to the task definitions digitally presented in

reverse speech [9].

B. Data Preprocessing

Each hospital is likely to provide fMRI datasets using

distinct file formats, plane of exam, view orientation, slic-

ing, voxel size, repetition time (TR), and number of time

points. Consequently, orientation, slice number, voxel size

and field of view were corrected and standardized. Further

more, datasets were converted into Neuroimaging Informat-

ics Technology Initiative (NIFTI) format using the transver-

sal view and radiology convention, and were finally mapped

into the standard Montreal Neurological Institute (MNI)

brain with 3mm voxel size and dimensions of 63x71x63.

A set of scripts in MATLAB was developed to perform the

needed correction and standardization. The fMRI Software

Library (FSL) was used to perform the pre- and post-

processing required for obtaining the resulting 3-D activation

maps. In the first level of analysis, each subject’s data was

motion corrected, high-pass filtered, and smoothed using a

full width at half maximum (FWHM) of 7 mm. All the

images used in the experiments were Z (Gaussianised T/F
) statistic images using cluster threshold Z > 2.3 and a

corrected cluster significance threshold of p = 0.05 [9], [10].

C. PCA on Activation Maps

Previous publications have reported PCA as the core anal-

ysis method for Scale Subprofile Model (SSM), which was

presented as a PCA approach for modeling regional patterns

of brain function [12]–[14]. The relationship between the

so-called subject loading and regional covariance pattern

(eigen-image) has been widely proved [15]. According to the

concept and merit of subject loading, we performed PCA on

our 122 fMRI activation maps without masking and intensity

normalization, utilized the top two components (subject

loadings) to self-cluster 3 activation patterns through the

Euclidean distance method. The following are the detailed

steps:

1. Each individual’s 3D dataset was transformed into a 1D

dataset with n voxels, where n is defined by M × N × L
, where M , N and L are the resolutions of the activation

map image in the x , y and z axes respectively. The whole

population of subjects was organized on a 2D matrix X ,

where each subject contributes a specific column in the

matrix. The mean value for each voxel across all subjects,

which composes the mean vector −→m of these k subjects, was

computed.

2. Each activation map was centered by subtracting the

mean vector for all subjects. The covariance matrix Cx was

then calculated from (1).

Cx = ΨT Ψ (1)

where Ψ = [Φ1Φ2..Φn] and each Φ is defined as Φ =
xi − mi, i = 1, 2...k with xi being the vector containing

the activation of a given subject.

3. MATLAB’s eigen-function was used to compute the

eigenvector matrix (E) of the covariance matrix (Cx) Then,

the eigenvectors were sorted by the corresponding eigenval-

ues. Each subject was represented by a row vector e.i =
[e1i..eji] where j corresponded to the eigenvectors being

used. Notice the E matrix here is equivalent to the subject

loading matrix as in SSM and U matrix calculated in (2) is

equivalent to the regional covariance pattern, but instead of

“regional”, our U is the covariance patterns of the whole 3D

brain region with normalization such that ‖ ui ‖= 1.

U = ΨE (2)

4. Based on the ei distribution in the matrix E, three

primary clusters with far distances from each other were first

determined linearly. Then the new mean ( mmean) vector

of these clusters was generated with subjects only chosen

from the three primary clusters, and the principal components

of these clusters were calculated, generating the new matrix

Umean following (2) .

5. To cluster subjects’ activation maps not falling in any

of the primary clusters (undecided regions),Each undecided

subject will be assigned to the closet cluster using the dis-

tance method. Vector xnew will now represent the activation

map of the subject. The following steps are undertaken:

a). Project Φnew, which is the new centered xnew

(Φnew = xnew − mnew ), onto the primary clusters defined

eigenspace using (3).

Φ̂new =

j∑

l=1

uT
l
Φnewu

l
(3)

Where each ul represents a column vector of the Unew matrix

as described in step 4.

b). Calculate the Euclidean distance feature using (4)

below:

Di = ||
⌢

Φnew − Φi|| (4)

for i = 1, 2, ...., q , where q is the number of primary cluster

members, with Φi = xi − mnew and where j (j < k )

is the number of eigenvectors selected. In this study, j was
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assigned the value of 2 since 2 eigenvectors were found most

relevant for meaningful clustering results.

c). The new subject Φi was assigned to the cluster

whose member had the minimum distance calculated through

(4). In other words, the new subject is assigned to the cluster

where the closest identified subject Φi was located.

III. RESULTS

A. PCA clustering Results

The distribution of the three final clusters found by the

distance method among the first two eigenvectors (Subject

Loadings) are depicted as in Fig.1.
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Fig. 1. Final clusters using two eigenvectors.These first 2 dominant
eigenvectors are used to select three primary clusters based on the criteria:
cluster 1:e1i > 0 ∩ e2i > 0 (which is the most condensed cluster region
with 32 data points); cluster 2: e1i < −0.1∩e2i > 0 (with ten data points);
cluster 3: e1i > 0 ∩ e2i < −0.1 (with five data points). The remaining
region outside these three clusters contains 75 data points undecided. After
distance method, 63 are now assigned to cluster 1 marked as diamonds;
four are now assigned to cluster 2 marked as squares; and eight are now
assigned to cluster 3 marked as triangles. There are mixed LRE and control
subjects in cluster 1. However, the majority of the members in clusters 2
and 3 belong to LRE group.

B. activation patterns by PCA clustering

The final clusters’ mean activation patterns are shown

in Fig.2 after the automatic self-clustering through distance

methods on the top two subject loadings. The strongly acti-

vated areas found in these three types of activation patterns

(in relation to the three clusters) broadly encompass Broca’s

and Wernicke’s areas. As anticipated, cluster 1 (Fig.2a) was

the typical language response on the left hemisphere while

cluster 3 (Fig.2c) had an atypical right hemisphere dominant

response. Most of the subjects from cluster 2 and 3 were

patients, 15 patients out of 18 for cluster 2 and 8 out 9

for cluster 3, while control subjects are dominant in cluster

1 (60/95) (Fig. 1). Cluster 2 (Fig.2b) consisted of a group

of cases that shared the same areas as cluster 1. However,

our method was able to distinguish cluster 2 from cluster 1

because cluster 2’s intensities were much higher than those

of cluster 1, especially in Broca’s area, also it has greater

right sided cerebellum activation. Note that clusters 2 and

3 are variants compared to major cluster 1, and cluster 3

is closer to current notion of atypical language activation

pattern which is atypical bilateral or right dominant.

IV. DISCUSSIONS AND FUTURE WORKS

A. Discussions

In this study we introduced a PCA procedure designed

to automatically identify sub-groups of distinct language

activation patterns in control and LRE patients from different

sites, who performed the same word definition fMRI task.

PCA also identified two subgroups with left lateralization.

The two left dominant subgroups differed on the intensity

level of regional activations. The typically developing control

children primarily were in the first subgroup while mostly

patients belonged to the second subgroup. These findings

may represent an effect of epilepsy or its underlying substrate

on language network expression or may represent different

strategies in performing the task [16]. The intensity differ-

ence suggests that patients may remain left dominant but

draw upon the distributed language network in a different

way than the control group. This implies antiepileptic drug

interaction for the patients or their compensatory mechanism

to perform the task, which means they may rely on a different

cognitive strategy. Simple and advanced PCA methods have

been utilized to identify fMRI activation patterns. Though

the concept and merit of subject loading is similar as SSM

[14], our method is simpler and the major difference relies on

the fact that we applied PCA without masking nor intensity

normalization, which is important for recognizing the distinct

patterns of different intensity. The relevance of this finding

was discussed above.

Differences in scanner manufacturer, magnetic strength

and acquisition parameters are perceived as limitations that

hinder any group analysis on the datasets collected from

a variety of sites. Indeed, standard group analysis post-

processing discourages the utilization of different scanners,

different settings, and different image resolution, because

the methods are dominated by models of assumptions. In

contrast, our adaptation of the PCA method is entirely data-

driven.

Since it’s both cost-effective and objective, the automatic

cluster tool presented here may help the assessment of large

data sets in which visual or ROI rating may be unpractical

or difficult. It could also be used as a means to interrogate

data for clinical variables.

B. Future Works

The next challenges are to determine a reasonable clus-

ter number, to define other patterns of atypical language

activation such as those localized in the neighboring non-

canonical areas, and also investigate the differences in extent

and peak intensities within the same hemisphere. Future

research may also take advantage of the sensitivity of the

PCA for group separation in order to overcome human rating

errors or rigid paradigms of interpretation which perhaps too

narrowly limit brain language activation into simple patterns

of left , bilateral or right.
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Fig. 2. Mean activation maps for each cluster. 2D array of selected axial cuts color coded for activation intensities. Higher activations are in red color.
Brain oriented in radiological convention: left hemisphere on the right side. (a) Mean activation map for cluster 1. Notice the strong left lateralization of
anterior (Broca) and posterior (Wernicke) clusters. (b) Mean activation map for cluster 2. The z value range is higher than (a). This explains the better
definition of Supplementary Motor Area (SMA).Also note greater activation in right cerebellum and in mid frontal gyrus. (c) Mean activation map for
cluster 3 with an atypical right hemisphere dominant response. Notice the strong right lateralization of anterior (Broca) cluster.
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