
  

  

Abstract—The computational identification from global data 
sets of stable and predictive patterns of gene and protein 
relative expression reversals offers a simple, yet powerful 
approach to target therapies for personalized medicine and to 
identify pathways that are disease-perturbed.  We previously 
utilized this approach to identify a molecular classifier with 
near 100% accuracy for differentiating gastrointestinal stromal 
tumor (GIST) and leiomyosarcoma (LMS), two cancers that 
have very similar histopathology, but require very different 
treatments.  Differential Rank Conservation (DIRAC) is a 
novel approach for studying gene ordering within pathways 
and is based on the relative expression ranks of participating 
genes. DIRAC provides quantitative measures of how pathway 
rankings differ both within and between phenotypes. DIRAC 
between pathways in a selected phenotype contrasts the 
scenarios where either (i) pathways are ranked similarly in all 
samples; or (ii) the ordering of pathway genes is highly varied. 
We examined gene expression in GIST and LMS tumor profiles 
and identified pathways that appear to be tightly regulated 
based on high conservation of gene ordering. The second form 
of DIRAC manifests as a change in ranking (i.e., shuffling) 
between phenotypes for a selected pathway. These variably 
expressed pathways serve as signatures for molecular 
classification, and the ability to accurately classify microarray 
samples provided strong validation for the pathway-level 
expression differences identified by DIRAC.   

I. INTRODUCTION 
HE realization of malignant phenotypes in many 
diseases – notably cancer [1, 2] – as intrinsically 

pathway-based in origin motivates the interrogation of high-
throughput expression data for studying biologically 
meaningful pathways. Existing pathway-based expression 
analysis tools commonly investigate informative patterns of 
up- or down-regulation of grouped genes in different disease 
states. For example, the gene set enrichment analysis 
(GSEA) platform identifies pathways that are significantly 
enriched for over- or under-expressed genes [3, 4]. Other 
methods employ a single statistic to represent the collective 
activity of a pathway (e.g., mean or median gene expression) 
[5, 6]. Perturbed levels of pathway activity (i.e., collective 
up- or down-regulation) are then examined to identify those 
pathways most differentially expressed between phenotypes. 
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These frameworks have been applied to diverse cancer 
systems and serve as a robust source of biological discovery 
[5, 7]. 

Cellular regulation of a pathway can also be characterized 
in the context of the relative expression ranking of the 
participating genes (referred to herein as ordering). It is 
possible that neither the individual pathway genes nor the 
pathway as a whole will display any notable over- or under-
expression in response to environmental or disease-related 
stimuli. Compared to measuring only increases or decreases 
in expression, regulation of ordering is reflected entirely in 
the relative levels of expression for genes within a pathway. 

The specific ordering of pathway genes is described by 
the corresponding ranks of expression levels (i.e., most 
expressed to least expressed), and is collectively referred to 
as a pathway ranking. We adopted a strategy for 
representing pathway rankings that is based on pairwise 
comparisons of gene expression levels (i.e., the relative 
mRNA abundance in each pair of genes). Such pairwise 
comparisons have been used to build two-gene predictors 
with simple decision rules for classification of expression 
profiles [8, 9]. These decision rules have resulted in highly-
accurate two-gene diagnostic classifiers that have proven 
effective for molecular identification of cancer [8-10]. As an 
extension of the relative expression reversal concept to 
pathways, we determined the pairwise ordering for each 
distinct pair of genes within a pathway, establishing an 
intuitive and computationally straightforward method for 
calculating pathway rankings.  

Rank conservation for a pathway describes the extent to 
which the ordering of genes is maintained over a population, 
or the manner in which a pathway ranking is maintained 
(i.e., the specific ordering observed). We have developed a 
new method, Differential Rank Conservation (DIRAC), to 
evaluate how patterns of rank conservation for pathways 
change in different phenotypes.  Specifically, differential 
rank conservation occurs in two forms. The first is 
differential rank conservation between pathways in a 
phenotype, where either (i) pathways are ranked similarly in 
all samples (high rank conservation); or (ii) pathways for 
which gene ordering is highly varied (low rank 
conservation). In the second case, differential rank 
conservation can manifest as a change in ranking (i.e., 
shuffling) between two phenotypes for a selected pathway. 

We applied DIRAC to analyze gene expression profiles 
obtained from primary intestinal tumors in patients with two 
related sarcomas: gastrointestinal stromal tumor (GIST) or 
leiomyosarcoma (LMS). 
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II. MATERIALS AND METHODS 

A. Microarray Data 
The gene expression profiles from 68 sarcoma patients 

were previously analyzed to identify a two-gene relative 
expression classifier that accurately differentiates GIST and 
LMS tumors[10]. Given the list {g1, …, gG} of G genes on a 
microarray, we let X = (X1, …, XG) denote the corresponding 
expression profile, where Xi is the expression of gene gi. Our 
data then consists of a G x N matrix; the n'th column 
represents the expression profile xn of the n'th sample, n = 1, 
…, N. In addition, each sample is labeled by a class (e.g., 
phenotype) Y  {1, 2,…,K}; K = 2 for binary classification. 
The labeled training set is F = {(x1, y1), …, (xN, yN)}. 
Expression profiles X and phenotype labels Y are regarded 
as random variables, and the elements of F represent 
independent and identically distributed samples from some 
underlying probability distribution of (X, Y).   

 

B. Rank Template Matching for Pathways 

Knowing the ordering of the gene expressions within each 
profile is equivalent to knowing all of the pairwise 
orderings, i.e., whether Xi < Xj or Xi > Xj for each distinct 
pair of genes 1 ≤ i, j ≤ G. For example, various rankings for 
the GS pathway in GIST patients are shown in Fig. 1. In 
order to define a template representing the expected ranking 
of pathway genes within a class, we consider the 
probabilities Pr(Xi < Xj |Y = k) for each pair of genes gi < gj 
and for each class k. These probabilities are estimated from 
the training set by computing the fraction of samples in each 
phenotype for which gene gi is expressed less than gene gj. 
The class k rank template for a fixed pathway m is the binary 

vector T(m,k) of length G(G – 1)/2 where the i,jth component 
is 1 if Pr(Xi < Xj |Y = k) > 0.5 and 0 if Pr(Xi < Xj |Y = k) ≤ 0.5. 
The rank template for the GS pathway in GIST patients is 
highlighted in Fig. 1. 

Given an expression profile x, there is then a natural 
measure for how well the sample matches the template T(k). 
The matching score of sample x is denoted by R(k)(x) and is 
defined to be the fraction of the G(G – 1)/2 pairs for which 
the observed ordering within x matches the template – those 
expected for class k. Rank matching scores corresponding to 
each unique ranking of the GS pathway in GIST patients are 
shown in Fig. 1. 

 

C. Rank Conservation Indices 
Averaging the rank matches over all the samples in a class 

k yields an rank conservation index denoted by μR
(k) = 

E(R(k)|Y = k). It is estimated in practice by averaging the 
scores R(k)(x) over all the samples (x, y) in the training set for 
which y = k. This index can be seen as a measure of stability 
in rankings among genes in the class. Two extreme cases 
correspond to (i) pure random shuffling of the expression 
values in the class from sample to sample, in which case μR

(k) 
≈ 5; and (ii) all samples displaying exactly the same 
ordering, in which case μR

(k) ≈ 1. In general, however, there 
are many gene pairs gi and gj which are expressed on 
different scales, and hence xi < xj across nearly all samples 
and phenotypes. As a result, one generally finds μR

(k)  5. 
This index is similar to entropy in the sense that values of 
μR

(k)  1 indicate a highly disorganized state in which there 
is a great deal of variation among the rankings in class k 
from sample to sample and values of μR

(k) ≈ 1 indicate a 
highly ordered state in which samples have very similar, and 
hence predictable, orderings among the genes. 

 

D. Rank Difference Scores 
We consider two phenotypes Y = 1, 2 and a fixed pathway 

m. If m is tightly regulated in one phenotype, the samples 
from that class, say Y = 1, will have high R(m,1) values on 
average. But if μR

(k) is large for both k = 1 and k = 2, and if 
the two rank templates T(m,1) and T(m,2) are significantly 
different, then the samples from class Y = 1 will generally 
have low values for the statistic R(m,2) as well as high values 
for the statistic R(m,1), and vice-versa for the samples from 
class Y = 2. We want to capture this phenomenon, namely 
low variance of pathway ranking within classes, but variance 
between classes, with a single statistic or metric. The natural 
measure is the difference Δ(m,x) = R(m,1)(x) – R(m,2)(x). 
Clearly, –1 ≤ Δ(m,x) ≤ 1 with positive (respectively, 
negative) values providing evidence that the phenotype of 
sample x is Y = 1 (resp., Y = 2). The characteristics captured 
by the rank difference score are illustrated in Fig. 2 for the 
EDG1 pathway. The difference score provides a classifier 
for phenotype identification based on the degree of 
regulation of the genes in pathway m. A new sample x is 
predicted to belong to class Y = 1 if Δ(m,x) > 0 and to class 

 
 
Fig. 1.  Example of tightly regulated pathway in GIST. A simplified 
diagram of the GS pathway, comprising six signaling proteins 
downstream of G-protein couple receptors, is shown above. The 
majority of GIST samples match the pairwise orderings in the GIST 
rank template exactly. 
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Y = 2 if Δ(m,x) ≤ 0. The classification rate for pathway m is 
then: η(m) = Pr(Δ(m,X) > 0|Y = 1)*Pr(Y = 1) + Pr(Δ(m,X) ≤ 
0|Y = 2)*Pr(Y = 2).  

For example, if Y = 1 denotes GIST and Y = 2 denotes 
LMS, and if we assume that the two phenotypes are a priori 
equally likely, then η(m) is simply the average of sensitivity 
and specificity relative to identifying GIST. In order to 
determine the most differentially expressed pathways 
between two given classes, we calculate rank templates for 
each class, evaluate the differential metric for each sample in 
the training set and choose the pathways with the largest 
estimated classification rate.  

III. RESULTS AND DISCUSSION 

A. Tightly Regulated Pathways in GIST and LMS 
The 20 most tightly regulated pathways in GIST and 

LMS, as measured by rank conservation indices, are shown 
in Table I. Large rank conservation index values indicate 
that gene orderings in these pathways are very similar 
among all samples of each phenotype. 

 
One example of a tightly regulated pathway in both GIST 

and LMS is the GS pathway (illustrated in Fig. 1). The GS 
pathway comprises major signaling proteins downstream of 
G-protein coupled receptors, including guanine nucleotide 
binding proteins alpha (GNAS), beta (GNB1), and gamma 
(GNGT1); adenylate cyclase 1 (ADCY1); and both the 
catalytic (PRKACA) and regulatory (PRKAR1A) subunits of 
the cAMP-dependent protein kinase C (PKC). Determining 
the relative expression level for each distinct pair among the 
six pathway genes resulted in an overall ranking defined by 
15 pairwise orderings. We found that one pathway ranking 
was shared by 27 out of 37 GIST samples (73%) and 23 out 
of 31 LMS samples (74%); as the probability for each 
pairwise ordering is much greater than 50%, it follows that 
the rank templates are identical for the two phenotypes. 
Furthermore, six other samples in GIST and LMS (12 total) 
displayed only a single mismatch. PKC family members 
phosphorylate a wide variety of protein targets and are 
known to be involved in diverse cellular signaling pathways, 
such as those associated with cell adhesion, cell 
transformation, cell cycle checkpoint, and cell volume 

control. 

B. Differentially Expressed Pathways in GIST and LMS 
A total of 165 pathways were identified that significantly 

differentiated between expression profiles of GIST and LMS 
(P-value less than 0.05), the top 20 of which are listed in 
Table II. 

The EDG1 pathway was identified as one of the most 
differentially expressed pathways in GIST and LMS, 
achieving a classification rate of 97.3% when used to 
separate expression profiles in the training data. The 
principal features governing the formulation of the rank 
difference metric, and also an example of how it is applied 
for molecular classification are illustrated for the EDG1 
pathway in Fig. 2. Here, R denotes the rank matching score 
for a profile, and superscripts indicate the phenotype of the 
rank template (e.g., RGIST represents the rank matching score 
for a sample when compared to the ordering defined in the 
GIST template). The rank difference values calculated for 
the EDG1 pathway are also shown in Fig. 2, along with the 
corresponding class predictions (i.e., GIST where positive, 
LMS if negative). 

 

C. Classification with DIRAC 
We used leave-one-out cross validation to estimate how 

accurately the top pathways – selected as those achieving the 
highest apparent classification rate for predicting sample 
classes based on rank difference scores – were able to 
predict the class of future samples (Fig. 3).  

 

As a means for comparison, we used the top scoring pair 
(TSP) algorithm and support vector machines (SVM) to 
classify samples in each of the datasets.  We found that our 
method performed well in a number of the datasets, 
including estimated accuracies between 90-98% in 
gastrointestinal sarcoma, leukemia, and prostate cancer (Fig. 
3). In cases with poor accuracies such as breast cancer, lung 
cancer, and melanoma, we saw that the other methods used 
also failed to accurately classify samples. We thus suspect 
that the poor performance in these cases is a factor of 
unclear differences in phenotypes, rather than a shortcoming 
of our method. The foremost goal of our method is to aid in 
biological discovery and hypothesis generation, and the 
excellent classification accuracy overall affirms the 

TABLE I 
TIGHTLY REGULATED PATHWAYS IN GIST AND LMS 

Pathway Number of Rank 
Conservation Genes Gene Pairs 

GIST    
GS 6 15 0.948 
BETAOXIDATION 6 15 0.941 
IFNG 6 15 0.930 
ETC 10 45 0.915 
CELL2CELL 13 78 0.906 

LMS    
RAN 5 10 0.968 
GS 6 15 0.966 
FEEDER 9 36 0.943 
CDC42RAC 14 91 0.939 
ETC 10 45 0.938 

TABLE II 
DIFFERENTIALLY EXPRESSED PATHWAYS IN GIST AND LMS 

Pathway Number of Apparent 
Accuracy 

 
Genes Gene Pairs P-value 

GH 6 15 0.973 < 1.0E-07 
EDG1 6 15 0.973 < 1.0E-07 
EIF4 6 15 0.970 < 1.0E-07 
ATM 10 45 0.959 < 1.0E-07 
CREB 13 78 0.950 < 1.0E-07 
KERATINOCYTE 5 10 0.932 1.6E-06 
P53HYPOXIA 6 15 0.931 1.6E-06 
FEEDER 9 36 0.930 1.6E-06 
CDC42RAC 14 91 0.927 2.4E-06 
ETC 10 45 0.925 2.4E-06 
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robustness of the pathway rank regulation measure. 

IV. CONCLUSIONS 
In this study we demonstrate a novel method to identify 

highly discriminative biological pathways based on differing 
patterns of gene expression ranking within pathways.    
Importantly, this method not only identifies perturbed 
pathways, but does so in such a way that it can be used for 
classification of samples. Thus, predictive accuracy becomes 
a strong measure for the validity of the perturbed pathway 
being a reproducible hallmark of the disease phenotype. 
Studying rank regulation of biologically relevant gene sets is 
thus a promising tool for measuring pathway behavior 
within and across different populations. 
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Fig. 2.  Differential rank conservation of the EDG1 pathway in GIST 
and LMS. The GIST template matching scores (RGIST) are higher on 
average in GIST samples than LMS template matching scores (RLMS). In 
LMS samples, RLMS scores are higher on average than RGIST scores. 
Comparing the two rank matching scores in each sample, GIST samples 
match the GIST template more than the LMS template in all but two 
cases; LMS samples match the LMS template more than the GIST 
template in all cases. Samples are classified as GIST if the difference 
score is positive, and as LMS if the difference is negative. 

 
Fig. 3.  Comparison of classification with DIRAC to other methods.  
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