
  

  

 
Abstract—Constraint-based models of metabolism are becoming 

available for an increasing number of organisms. These models can 
be used in combination with existing experimental data to describe 
the behavior of an organism and to analyze experimental 
observations in the context of a model. Such a descriptive 
application of the models can also allow for the integration of 
various types of data. Additionally, these models can be used in a 
predictive fashion to hypothesize the outcomes of new experiments. 
Comparing model predictions with experimental results allows for 
the iterative improvement of developed models and increases our 
understanding of the organism being studied. A number of recent 
examples of both descriptive and predictive applications of 
constraint-based models are discussed. 

I. INTRODUCTION 
systems approach towards the study of biological 
networks is driven by both computational and 

experimental efforts.  Diverse high-throughput datasets 
(including genomic, transcriptomic, proteomic, phenomic 
and metabolomic), which characterize components, 
interactions, and network states are becoming readily 
available. However, with this data comes a need to integrate 
and analyze these datasets, and computational models can 
facilitate this process.   
 
Computational models have multiple roles in the field of 
systems biology, which can be both descriptive and 
predictive. Models as descriptive tools allow for the 
integration and analysis of a variety of large experimental 
datasets, such as genome annotations, gene expression, gene 
essentiality, phenotype microarrays, ChIP-chip and ChIP-
seq, protein interactions, proteomic and metabolomic 
datasets. Significant challenges exist in integrating these 
datasets which can be attributed to the both size and non-
unique mapping between different types of data (eg. 
metabolite and protein concentrations). Integration and 
analysis of data by computational models can help interpret 
experimental data and generate hypotheses regarding 
network components or component interactions.  
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Models, as predictive tools, allow for the simulation of a 
cell’s phenotypic response to either environmental or genetic 
perturbations. By predicting phenotypic behavior, models 
can be used as design tools to engineer strains or 
environments that result in desired phenotypes. In both 
descriptive and predictive applications, models provide a 
way to generate and evaluate different hypotheses.  

II. CONSTRAINT-BASED MODELS 
A variety of modeling methods can be used to model 
metabolic and regulatory networks [1-3]. Constraint-based 
methods can be used to model genome-scale networks since 
less information (such as metabolite and protein 
concentrations and kinetic rate constants) is needed to 
construct them. These models can be developed with 
substantially less information than kinetic models, making 
them more tractable for less characterized organisms, where 
kinetic information is not available. 

Constraint-based models of metabolism use three types of 
constraints to define a set of feasible flux distributions for a 
given metabolic network. Solutions that do not satisfy any of 
the imposed constraints are excluded from space of all 
feasible flux distributions. Application of additional 
constraints further reduces the solution space and, 
consequently, reduces the number of possible solutions a cell 
can utilize. Constraints that have been used in constraint-
based metabolic models include steady-state mass balance, 
thermodynamic (regarding reaction reversibility), and 
enzymatic capacity constraints (where upper and lower 
limits restrict individual flux values) [4]. Steady-state mass 
balance constraints can be represented by the system of  
linear equations represented by: 

 S·v = 0    (Eq. 1)  

where S is the stoichiometric matrix describing all the 
reactions in the network and v is a vector describing fluxes 
through each of the reactions. Each column of S corresponds 
to an individual reaction and the rows of S correspond to the 
different metabolites. Equation 1 imposes the restriction that 
the total rate of production for each metabolite in the 
network must equal the total rate of consumption for that 
metabolite. In addition to steady-state mass balance 
constraints (Eq. 1), thermodynamic constraints and enzyme 
capacity constraints restrict the range of values for 
individual fluxes (v) in the network (Eq. 2). 
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 vmin ≤ v ≤ vmax   (Eq. 2) 

Enzyme capacity constraints provide upper (vmax) and lower 
(vmin) limits on the values a given flux can take. Application 
of thermodynamic constraints further restricts the range of 
flux values. If a reaction is irreversible then the 
corresponding flux must be greater than or equal to zero 
(hence, vmin = 0); while, reversible reactions can have 
negative flux values. More recent studies have directly 
incorporated calculations of the change in Gibbs free energy 
of reactions into the models [5-7], which allows for 
constraints on flux directionality using metabolite 
concentrations [7]. 

Given a set of constraints, models can be used to 
characterize the solution space and predict which flux 
distribution a cell is likely to use. Different constraint-based 
methods have been developed to characterize the solution 
space, identify physiologically relevant flux distributions [8-
12], evaluate flux inter-dependencies [13-15], incorporate 
regulatory constraints [16-19], and identify and resolve 
model-data discrepancies [17, 20-23]. Flux balance analysis 
is one of the most commonly used constraint-based methods, 
where an objective function is used to identify flux 
distributions which have the maximum (or minimum) value 
for this objective function. A variety of objective functions 
have been proposed for microbial networks, with 
maximizing biomass production as the most commonly used 
[4, 8]. Recently, ATP yields and ATP production normalized 
to the total flux through metabolism have also been shown to 
be useful for predicting intracellular flux distributions [24]. 
To date there are dozens of genome-scale constraint-based 
models of metabolism available [25] (See Figure 1), and the 
modeling applications continue to grow as do the number of 
methods used to analyze the models [4, 26]. 

III. RESULTS 

A. Constraint-Based Models as Descriptive Tools 
Constraint-based metabolic models summarize the 
information available for an organisms metabolic network 
based on a number of sources, including genome 
annotations, primary literature, and on-line databases [27]. 
These genome-scale models account for all of the metabolic 
pathways in an organism, and as such represent a significant 
fraction of the genes in an organism (eg. ~28% of the genes 
in Escherichia coli are accounted for in the latest model 
[28]). Developed models can be useful not only as predictive 
tools (as described below), but also as descriptive tools that 
facilitate the evaluation, analysis, and interpretation of 
experimental data. Constraint-based models have been used 
to analyze various types of data, including gene essentiality, 
growth phenotypes, protein expression, and gene expression.  
 
A model of E. coli metabolism, for example, was used to 
analyze lethal and non-lethal phenotypic data for single gene 
deletion strains from the Keio collection [29]. The large 
number of consistencies (~91%) between observations and 
model predictions provides an explanation for the observed 

phenotypes. Additionally, the discrepancies were used for 
generating hypothesis about the presence or regulation of 
alternative pathways in the organism. In addition to growth 
phenotypes, gene expression data can also be analyzed in the 
context of a model. A method was recently been developed 
by Sholmi et al. [12] which incorporates gene expression 
data in the calculation of intracellular fluxes. Here flux 
distributions are found by favoring fluxes through reactions 
of highly expressed genes and avoiding fluxes through 
reactions of lowly expressed genes. Thus, gene expression 
data in combination with the models can be used to find 
metabolic pathways which are likely active in the organism 
under a given condition. 
 

 

 
B. Constraint-Based Models as Predictive Tools 

Constraint-based metabolic and regulatory models have also 
been successfully used to predict the metabolic and 
phenotypic behavior of cells. We have recently 
reconstructed the metabolic network for Salmonella 
typhimurium LT2 [30]. The corresponding constraint-based 
metabolic model for S. typhimurium was used to predict 
growth phenotypes (growth or no growth) on various carbon 
and nitrogen sources based on the presence of enzymes and 
transporters in the genome. Model predictions matched 
experimental growth measurements for ~80% of the cases 
that could be compared, with most errors being cases where 
the bacterium appears to have the pathways needed for 
catabolism but does use them experimentally [30]. 
Transcriptional regulation may explain some of the 
discrepancies between model predictions and experimental 
observations, as 13 of 21 incorrectly predicted carbon 
sources can be used as nitrogen sources experimentally, 
indicating that the required enzyme(s) may be expressed 
only during nitrogen limitation [30]. 
 
In this study, we also predicted whether S. typhimurium 
mutant strains defective in metabolic enzymes would be 

Figure 1.Available Genome Sequences and Constraint-
Based Metabolic Models. Shown here is the exponential 
growth in the number of sequenced microbial genomes 
(red bars) and genome-scale metabolic models (blue bars). 
Both the number of sequenced organisms and developed 
models are growing at an exponential rate. 
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virulent or avirulent and then compared our simulation 
results to experimental data. We found that model 
predictions were consistent with experiments for 80% of the 
cases examined. A large number of the incorrect predictions 
(6 out of 11) could be corrected by adjusting what nutrients 
were assumed to be present in the host-cell environment in 
the simulations [30]. 
 
We have recently developed a metabolic model for 
Shewanella oneidensis MR-1, which can use a wide variety 
of electron acceptors. From chemostat data we were able to 
estimate the growth associated ATP requirement—this value 
was substantially higher than those reported for other 
organisms. The model was then evaluated to identify futile 
cycles and other less energetically efficient pathways that 
could explain the high estimate for growth associated ATP 
requirement. These model predictions, about the possible use 
of less energetically efficient pathways, can be used to 
design experiments to test what enzymes may cause the 
organism’s seemingly high ATP requirement (Pinchuk and 
Reed, unpublished data).   

C. Iterative Improvement of Constraint-Based Models 
While correct predictions are important for verifying the 
accuracy of a model, incorrect predictions can also be useful 
as well. These incorrect predictions can pinpoint problems in 
model formulations or lead to the discovery of new 
metabolic or regulatory connections in the networks being 
studied. For example, by looking at cases where the S. 
typhimurium model made incorrect predictions about mutant 
virulency we could identify changes needed in the list of 
nutrients that we had included in our simulations of the host-
cell environment.  
 
While discrepancies between model predictions and 
experimental results can be used to improve models, these 
discrepancies can also lead to new biological discoveries. 
We previously used discrepancies between simulated and 
observed E. coli growth phenotypes (model predicted no 
growth, but the cells were able to grow) to find new 
metabolic reactions which occur in E. coli metabolism [20]. 
In this study, we developed an algorithm to identify 
potentially missing metabolic and transport reactions from 
our model by analyzing growth phenotypes, and then 
screened knock-out mutants to find proteins responsible for 
catalyzing these missing reactions. Here models were used 
to identify what experimental observations were inconsistent 
with our current knowledge of E. coli metabolism and to 
hypothesize what reactions were missing in E. coli 
metabolism.  This integration of computation and 
experimental efforts improved models of E. coli metabolism 
and expanded our understanding of metabolism in this 
organism [20]. 
 
Once accurate models are developed they can be used in a 
wide variety of applications, as has been recently reviewed 
for E. coli [26]. One such application is the design of strains 
for metabolic engineering, where the production of specific 
compounds is a desirable phenotype. Here models can be 

used to predict how metabolite production will be affected 
by changing an organism’s metabolic network through 
removal of reactions. Recent studies have illustrated the 
usefulness of E. coli metabolic constraint-based models as 
tools for engineering strains for a the production of a variety 
of compounds, including lycopene [31], lactate [32] and 
valine [33]. 

IV. CONCLUSIONS 
As illustrated in the above examples constraint-based models 
of metabolic networks can be used in both a retrospective or 
descriptive fashion to analyze existing experimental data, or 
in a prospective or predictive fashion to generate predictions 
about results for new experiments. The integration of 
modeling and experimental efforts benefits both model 
development and experimentation, where experimental data 
can improve models and models can aide in the 
interpretation and analysis of data. The development of new 
computational and experimental approaches will allow for 
the better understanding of cellular physiology in both the 
well and less characterized biological systems. 
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