
  

  

Abstract— Airflow in the respiratory system is complicated as 

it goes through various regions with different geometries and 

mechanical properties. Three-dimensional (3-D) simulations are 

typically limited to local areas of the system because of their 

high computational cost. On the other hand, the one-

dimensional (1-D) equations of flow in compliant tubes offer a 

good compromise between accuracy and computational cost 

when a global assessment of airflow in the system is required. 

The aim of the current study is to apply the 1-D formulation in 

space and time variables to study the propagation of a pulse 

wave in human airways; first in a simple system composed of 

just one bifurcation, trachea-main bronchi, according to the 

symmetrical Weibel model. Then extending the system to 

include a further generation, the bronchi branches. Pulse 

waveforms carry information about the functionality and 

morphology of the respiratory system and the 1-D modelling, in 

terms of space and time variables, represents an innovative 

approach for respiratory response interpretation. 1-D modelling 

in space-time variables has been extensively applied to simulate 

blood pressure and flow in the cardiovascular system. This 

work represents the first attempt to apply this formulation to 

study pulse waveforms in the human bronchial tree.  

 

I. INTRODUCTION 

 

nformation on the morphology and functionality of the 

cardiovascular and respiratory systems can  be derived by 

analyzing pulse waveforms in arteries [1, 2] and airways, 

respectively. Understanding the underlying mechanisms of 

pulse wave propagation in normal conditions and the impact 

of disease and anatomical variation on the patterns of 

propagation is therefore relevant to improve prevention, 

diagnosis and treatment of disease. The one-dimensional (1-

D) equations of flow in compliant vessels offer a good 
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compromise between accuracy and computational cost when 

a global assessment of the system is required; 3-D 

simulations are typically limited to local areas of the system 

because of their high computational cost [2]. The 1-D model 

in space-time variables provides information regarding the 

distance and the magnitude of potential blockages in the 

airways respectively derived from wave timing and 

amplitude. The aim of this paper is to apply the 1-D 

formulation to study air wave propagation in the first and 

second generation of the human airways using different 

boundary conditions at the terminal segments.  

 

II. METHODOLOGY 

A.1 Governing equations 

Conservation of mass and momentum applied to a 1-D 

impermeable and elastic tubular control volume of 

Newtonian incompressible fluid leads to the system of 

hyperbolic partial differential equations [1]: 
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where x is the axial coordinate of the tube, t is the time, 

A(x,t) is the cross-sectional area of the tube, U(x,t) is the 

average axial velocity of the fluid, p(x,t) is the average 

internal pressure over the cross-section, ρ is the density of 

the air ( 3/204.1 mkg ) , and f(x,t) is the friction force per unit 

length. Equations (1) and (2) can be completed with the 

pressure area relationship [1, 2]: 
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is a parameter associated with the mechanical properties of 

the tube wall. It depends on the wall thickness he(x) and the 

sectional area Ae(x) at the equilibrium state (p,U)=(pext,0). E 

is the Young’s modulus, pext is the constant external pressure, 

and ν=0.5 is the Poisson’s ratio (the vessel wall is 

considered to be incompressible). Equations (1) to (3) are 

solved using a discontinuous Galerkin scheme with a 

spectral/hp spatial discretisation, a second order Adams-

Bashforth time-integration scheme, and the initial conditions 
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(p,U)=(0,0) everywhere in the system. The parameter β is 

related to the speed of pulse wave propagation c(x,t) 

through: 

                                  2/12
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A detailed description of the numerical solution is given in 

earlier work [1]. 

 

A.2  Linear analysis of wave reflections  

 

Considering an incident wave that encounters a reflection 

site a component of the wave will be reflected and another 

transmitted. The reflection coefficient (R) can be defined as: 

R = (δp − ∆p) /∆p , where δp-∆p is the change of pressure 

across the reflected wave and ∆p is the change of pressure in 

the incident wave [1].  Considering a bifurcation where the 

parent vessel is 0 and the daughter vessels are 1 and 2 (Fig. 

1), R takes the form: 
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Since pressure is constant at the bifurcation, the transmission 

coefficient can be calculated as: T=1+R. The terminal 

reflection coefficient (Rt), in a system with a single 

resistance (Rs) coupled to the outflow of a 1-D model 

terminal segment, can be expressed: 
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Where Z0 is the characteristic impedance of the terminal 

segment (
eAcZ /0 ρ= ); 11 <<− tR .  Rt =-1 corresponds to 

an open-end condition, Rt =0 non-reflective condition (Rs=Z) 

and Rt =1 corresponds to a total blockage of the terminal 

segment. 

 

B. Geometrical Model 

 

In the human respiratory system the elementary airways 

branch in an irregular dichotomy way. However, in this study 

we follow the model of Weibel [3], which assumes symmetry 

at each bifurcation, and thus allows for an easier 

interpretation of our preliminary results. The parameters we 

used to build the model are: lengths (l) taken from Weibel 

[3], volume corrected diameter (DFRC) (applied to Weibel 

model to obtain diameter at functional residual capacity 

FRC) according to [7], wall thickness (h) from Montaudon et 

al. [4], and Young’s modulus (E) defined according to the 

content of cartilage and soft tissue of each generation [5-7].  

 
TABLE I 

Lengths (l), Diameter at FRC (DFRC), wall thickness (h), Young’s modulus 

(E) and wave speed (c) for the considered Weibel generations (Gen.) 

 

Gen. l(mm) DFRC(mm) h(mm) E (MPa) c(m/s) 

0 120 17.83 1.4 2.9 506.5 

1 47.6 12.1 1.3 2.9 592.3 

2 19 8.05 1.3 1.4 514.9 

Figure 1 and 2 show the bronchial tree models under 

consideration; in Figure 1 the one generation model (model 

1) has Rt =0 and Rt =1 as terminal reflection coefficients for 

the two terminal segments (main bronchi). 
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0

21 G0

Rt=0 Rt=1
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Fig. 1. Model 1: model of the trachea and main bronchi (first generation) 

with Rt =1 in one of the two main bronchi. G describes a bifurcation with 

subscript that denotes the number of the mother tube. 

 

Figure 2 shows the model for a two generations system 

respectively with one (model 2A) and two (model 2B) 

blockages (Rt=1) in the terminal segments. The remaining 

segments are set with Rt =0. 
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Fig. 2. (A) Model 2A: model of the trachea, first and second generation; 

Rt=1 in one of the four terminal segments. (B) Model 2B:  model of the 

first and second generation, Rt =1 in two of the four terminal segments. G 

describes a bifurcation with subscript that denotes the number of the 

corresponding mother tube. 

 

We enforced a flow pulse (Q) of 0.1 l/s at the inlet of the 

trachea. This delta wave was approximated with the 

Gaussian function:  

                    ))01.0(*10(1 27.9

*10)( −−−= t
etQ                                    (8) 

The time of 0.01s corresponds to the time of the initial 

Gaussian pulse reaching its peak. We impose that, after the 

pulse, the inlet behaves as a reflective boundary with Rt =1. 

Calculations were made at the middle point of each segment. 

In studying the waves running through the bifurcation we 

refer to the mother tube as 0 and the daughters as tubes 1 and 

2 according to Figure 1. In Figure 2  the mother tube is 0, the 

two segments of the first generation are 1 and 2 while 

segments of the second generation are identified with 3-4-5-

6. Point G describes a bifurcation with subscript that denotes 

the number of the corresponding mother tube. The waves 

travelling forward and backward will be denoted by ‘+’ and 

‘-‘ respectively. Therefore, a wave that runs in the path 0-0 

means that it runs forward from the inlet of the mother tube, 

is reflected at the bifurcation G0  then runs backward to the 

inlet of the mother tube. The path 01-1-0 means that the 
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wave runs from the inlet of the mother tube towards the 

bifurcation G0, is transmitted into the daughter tube 1, is 

reflected backwards to the bifurcation G0 and finally runs 

backwards to the inlet of the mother tube [8]. 

III. RESULTS  

Figure 3, 4 and 5 show the simulated pressure waves  at 

middle point of the mother tube respectively according to 

model 1 (Fig. 1), model 2A (Fig. 2A) and model 2B (Fig. 

2B). The waves shown in the figures are associated with the 

corresponding paths. For example, along the path 0, the time 

(s) of arrival of incident wave at middle point of the mother 

tube is given by:  t(0)=0.01s+ )*2/( 00 cl ; comparing this 

theoretical time with the time shown in the figures it is 

possible to associate ‘Wave A’ with the path 0; same method 

is applied to determine the time of arrival for all the other 

waves according to the corresponding path and wave speed. 

Table II and IV provide the paths, times and the simulated 

amplitude for the waves associated to model 1 (Figure 1, 

Table II), model 2A and 2B (Figure 2A, B, Table IV). 
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Fig. 3. Pressure waves at the middle point of segment 0 (trachea) according 

to model 1 (Fig. 1) 

 

TABLE II 

Wave paths with theoretical (t=l/c) arrival time at the middle point of the 

mother tube (0). (-) denotes a backward wave. The numbering of path refers 

to Fig. 1. Computational amplitudes refer to peaks in Fig. 3, for theoretical 

amplitudes see text for explanation. 

 

 

IV. DISCUSSION AND CONCLUSIONS  

The expression of flow pulse (Eq. 8) generates an incident 

wave of approximately 0.06 ms duration. Due to the high 

wave speed in air (Table I), this short pulse is necessary to 

assure that the arrival of reflected waves appears after the 

end of the incident wave.  From Figure 3 and Table II, the 

‘wave B’ (path 0-0) corresponds to the wave reflected at the 

bifurcation between the mother tube and the two segments of 

the first generation (point G0); it is possible to compare its 

computational amplitude (Table II) with the theoretical 

amplitude (IB) calculated by:  

                   5.28*
0

== forwardGAB RII Pa                    (9) 

In which IA is the amplitude of incident Wave (‘Wave A’) 

and RG0forward is the reflection coefficient in the forward 

direction at the bifurcation point G0, according to Table III. 

Using the same method, for the amplitude of wave C (path 

02-2-0, Figure 3) we have:  

   )1(**)1(*
00 backwardGtforwardGAC RRRII ++=         (10) 

Rt is the terminal reflection coefficient that in model 1 (Fig. 

1) is equal to 0 and 1 for the two terminal segments. Being 

the ‘Wave C’ (path 02-2-0), the wave associated to the 

reflection from the terminal segment, the knowledge of the 

time and wave amplitude provides information regarding the 

distance and the magnitude of the blockage. Theoretical 

amplitudes for each path of model 1 are shown in Table II.  

 
TABLE III 

Reflection coefficients (R) evaluated in forward and backward directions at 

the bifurcation points G0, G1, G2 (Fig. 1-2) according to Eq. 6. 

 

R  

Forward Backward 

G0 0.118 -0.559 

G1 or G2 -0.009 -0.495 

 

Applying the same concepts, it is possible to consider and 

compare a more complicated system composed by two 

generations in different conditions of peripheral blockage 

according to model 2A (one blockage, Rt=1, Figure 2A) and 

model 2B (two blockages, Figure 2B) to study the effects on 

wave amplitude (Table IV). Using Table IV it is possible to 

observe that ‘Wave D’ in model 2A is composed by two 

different sub-waves (path 0-00 and 026-6-2-0). In model 2B 

the same ‘Wave D’ derives from the combination of three 

waves (path 0-00, 026-6-2-0 and 013-3-1-0) that arrive 

simultaneously at the middle point of the mother tube. The 

difference in amplitude for this Wave, in model 2A and 

model 2B (Table IV), agrees with the theoretical 

expectations, using the same principles described in Eq. 9 

and 10. Wave E (wave path 026-66-6-2-0 in model 2A and 

wave path 026-66-6-2-0 plus 013-33-3-1-0 in model 2B, 

Table IV) is the expansion wave generated by the re-

reflection in the backward direction at point G2 (model 2A) 

and points G1, G2 (model 2B), R=-0.495 from Table III. In 

model 2B the amplitude of this wave appears to double 

compared to model 2A (Table IV), for the symmetry of the 

system according to theoretical expectations. 

Wave Wave path Time (s)
Theoretical 

Amplitude (Pa)

Computational  

Amplitude (Pa)
A 0 0.010118 240.32 240.32

B 0-0 0.010355 28.55 28.32

C 02-2-0 0.010516 118.46 115.63

D 0-00 0.010592 28.55 28.98

E 02-22-2-0 0.010676 -66.26 -64.91

F 02-2-00 0.010752 118.46 115.21

G 02-22-22-2-0 0.010837 37.06 38.13

H 02-22-2-00 0.010913 -66.26 -63.89

0-002-2-0 0.010989 14.07

02-22-22-22-2-0 0.010998 -20.73

02-2-00-0 0.010989 14.07

 L 02-22-22-2-00 0.011074 37.06 38.16

02-2-002-2-0 0.011151 58.39

02-22-22-22-22-2-0 0.011158 11.59

02-22-2-00-0 0.011151 -7.86

14.83I

M 49.99
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Fig. 4. Pressure waves at the middle point of segment 0 (trachea) according 

to model 2A (Fig. 2A). 
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Fig. 5. Pressure waves at the middle point of segment 0 (trachea) according 

to model 2B (Fig. 2B) 

 

The 1-D modelling, applied to human airways bifurcations, 

has been shown to catch the theoretical timing and amplitude 

of waves even when the fluid is not blood. These preliminary 

results are encouraging and indicate that once the 1-D model 

is extended to study more bifurcating generations of airways, 

it would be a useful tool to predict and to better understand 

physiological and pathological respiratory conditions and 

their effects on velocity and pressure in each segment.  

 

A. Limitations 

 

In these investigations we tested a limited number of 

bifurcations for the preliminary results. We used only total 

reflective (Rt=1) and non-reflective (Rt=0) reflection 

coefficients however we acknowledge that terminal 

reflections may be different. The inflow pulse used in this 

study was chosen to be very short in time which we 

acknowledge to be much shorter than a normal breathing 

cycle. 
 

 

 

TABLE IV 

Wave paths with theoretical (t=l/c) arrival time to the middle point of the 

mother tube (0). (-) denotes a backard wave. The numbering of path refers 

to fig. 2A-B. Wave amplitude refers to computational results for model 2A 

(figure 2A) and model 2B (figure 2B). 

 

Wave Wave path Time (s)

Computational 

Amplitude (Pa)                  

model 2A

Computational 

Amplitude (Pa)  

model 2B                  

A 0 0.01011 240.32 240.32

B 0-0 0.01035 28.32 28.32

 02-2-0 0.010516

01-1-0 0.010516

  0-00 0.010592

026-6-2-0 0.010589

013-3-1-0 0.010589

026-66-6-2-0 0.01066 -28.78

013-33-3-1-0 0.01066

026-66-66-6-2-0 0.01073 14.18

013-33-33-3-1-0 0.01073

0-00-0 0.010829

026-6-2-00 0.010826

026-6-226-6-2-0 0.010824

026-66-66-66-6-2-0 0.010811

013-3-1-00 0.010826

013-3-113-3-1-0 0.010824

013-33-33-33-3-1-0 0.010811

026-6-213-3-1-0 0.010824

013-3-126-6-2-0 0.010824

026-66-6-2-00 0.010905

026-66-66-66-66-6-2-0 0.010884

026-66-6-226-6-2-0 0.010898

013-33-3-1-00 0.010905

013-33-33-33-33-3-1-0 0.010884

013-33-3-113-3-1-0 0.010898

026-66-66-6-2-00 0.010974

026-66-66-66-66-66-2-0 0.01095

013-33-33-3-1-00 0.010974

013-33-33-33-33-33-1-0 0.01095

026-6-2-00-0 0.011063

026-6-226-6-2-00 0.0110609

013-3-1-00-0 0.011063

012-3-113-3-1-00 0.0110609

43.63

85.66

I
3.05

L 21.37

-48.23H

-12.92

5.76

22.57

C -3.14

G 107.601

143.511

E -57.51

28.72F

D

-2.64
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