
  

  

Abstract— An implantable bi-directional brain-
machine interface (BMI) prototype is presented.  With 
sensing, algorithm, wireless telemetry, and stimulation 
therapy capabilities, the system is designed for chronic 
studies exploring closed-loop and diagnostic 
opportunities for neuroprosthetics.  In particular, we 
hope to enable fundamental chronic research into the 
physiology of neurological disorders, define key 
electrical biomarkers related to disease, and apply this 
learning to patient-specific algorithms for therapeutic 
stimulation and diagnostics.   The ultimate goal is to 
provide practical neuroprosthetics with adaptive therapy 
for improved efficiency and efficacy.   
 

I. INTRODUCTION 
 

EUROMODULATION is approved for the treatment 
of several neurological disorders including Parkinson’s 

disease, essential tremor, and dystonia. Presently most 
neuromodulation devices operate in “open-loop,” meaning 
that there is no sensing capability and adjustments require 
clinician intervention. There is great interest in measuring 
neurological activity to optimize therapy in real-time based 
on relevant biomarkers in the spirit of a “closed-loop” 
neuroprosthesis. In order to explore the feasibility of such 
systems, a chronic research tool is needed to establish the 
biomarkers relevant to disease and validate prototype 
algorithms utilizing these physiological measurements. As 
illustrated in Fig. 1, at a minimum such a system requires a 
sensing interface input, a signal processing and algorithm 
classification system, a stimulation output, and wireless 
telemetry for data exchange.  In addition, indirect 
monitoring of activity and posture can provide important 
supplementary data on the patient’s state.  Such a system 
that links sensing and stimulation through a control 
algorithm can be considered a bi-directional brain-machine 
interface (BMI).   

The major challenges to implementing such a system 
include the chronic measurement of neurological 
information, the implementation of algorithms within a 
highly power-constrained environment, and the hurdles of 
building a safe and reliable system that can withstand the 
body’s harsh environment. By leveraging existing implant 
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technology and adding a carefully partitioned sensing and 
algorithm system, we were able to balance these constraints 
to construct a practical bi-directional BMI research system.  

 

 
Fig. 1: Functional block diagram for bi-directional BMI. 

 

 
 

Fig. 2: Electrical system block diagram for implantable BMI. 

II. IMPLANTABLE BI-DIRECTIONAL BRAIN-MACHINE 
INTERFACE SYSTEM DESIGN  

A. Overall System Architecture 
The overall system architecture of the bi-directional BMI 

is depicted in Fig. 2. The prototype is built on an existing 
neurostimulator to leverage proven technology that is viable 
for chronic implantation. To extract information from the 
brain, a custom designed Brain Activity Sensing Interface IC 
(BASIC) is added for sensing neural activity. Connections 
from the sense and stimulation electronics to electrodes are 
made through a set of switch matrices and isolation-
protection circuitry at the header block of the device; 
electrode combinations are then attached at this block for 
flexible BMI architectures. In addition, a custom three-axis 
accelerometer is included to provide sensing for posture and 
activity. Sensed signals are passed to a microprocessor for 
performing control and algorithms. Interactions between the 
original neurostimulator and the algorithm microprocessor 
are established by an interrupt vector and I2C port. An 
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SRAM is included for recording events and general data 
logging. The telemetry subsystem allows for new algorithms 
to be downloaded into the device and data to be uploaded to 
an external data logger. The rest of this section highlights 
the major features of the BMI architecture. 

B. Sensing Strategy and Interface 
The choice of neural recording strategy is a balance of 

information content and technical feasibility. While single-
cell recordings and EEG are viable for many applications, a 
good balance of trade-offs for our application is provided by 
the recording and analysis of local field potentials (LFPs).  
LFPs generally represent the ensemble activity of an in vivo 
neural population around the electrode and are more 
chronically robust [1]. In addition, LFPs encode highly 
meaningful data for neurological disease [2], and they are 
emerging as a viable candidate for BMI applications [1].  In 
our opinion, LFPs represent the best balance between 
current technological limitations of electrode systems and 
meaningful biomarkers correlated with pathological neural 
activity, especially when restricting ourselves to electrodes 
available for current neuromodulation devices [3].         

High signal resolution and low system power 
consumption, which are essential for such an implantable 
BMI, are difficult to achieve even for LFPs with moderate 
frequency content.  However, the band power fluctuations in 
LFPs are generally at least an order of magnitude slower 
than the frequencies at which they are encoded.  This 
motivates a BASIC architecture that directly extracts energy 
in key neuronal bands and tracks the relatively slow power 
fluctuations prior to digitization and algorithmic analysis, 
similar to the spectral processing paradigm of AM 
demodulation to extract the audio signal from a high-
frequency carrier signal prior to complex processing [3,4].    

The BASIC analog preprocessing block extracts 
bandpower at key physiological frequencies from LFPs with 
an architecture that is flexible and low-noise. As described 
in [3], the signal chain of the BASIC implements a short-
time Fourier transform (STFT) by using a modified chopper-
amplification scheme. This architecture provides both gain 
and spectral estimation with power efficient processing. 
Referring to the die photo in Fig. 3, four sense channels are 
implemented on the BASIC, two of which can be configured 
as power sensing channels over a broad range of spectral 
bands from DC to 500 Hz. The other two channels can be 
used for recording 200 Hz time domain waveforms. The 
power channels can sense from the same electrodes to 
extract two frequency bands simultaneously at the same site. 

A custom three-axis accelerometer is also incorporated in 
the system to provide sensing for posture, tremor and 
activity.  Trends in these states can often provide some 
insight into the overall health of the patient.  The design 
aims at extremely low power consumption while 
maintaining acceptable noise performance; details are 
provided in [5]. 
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Fig. 3:  Brain Activity Sensing Interface IC (BASIC) die photo. 

C. Signal Processing and Algorithm Architecture  
The challenge of processing signals is balancing power 

consumption, flexibility and performance. Since biomarkers 
of interest have already had their spectral power extracted 
by the BASIC’s STFT and the spectral power changes vary 
slowly compared to the LFP frequencies that encode the 
biomarkers, sampling and processing can be done at 
sampling rates on the order of Hz. This allows for a system 
partition (Fig. 4) of analog pre-processing to extract key 
information and reduce dynamic range, while running 
complex digital algorithms at slow clock rates. This partition 
results in an acceptable power budget for a chronic 
implantable device; similar “neuromorphic” principles are 
discussed in [4].  
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Fig. 4: Partitioning for signal processing and algorithms.   

 
The system is highly configurable. The microprocessor 

controls the BASIC chip via control registers, enabling 
adjustments to gain, STFT parameters for spectral 
estimation, and electrode connectivity through telemetry and 
algorithm control.  To maximize flexibility, algorithms can 
always be adjusted via telemeterized firmware updates. 

The algorithm running in the processor is used to 
appropriately classify the signal and estimate patient state. 
This allows the BMI to actuate stimulation therapy 
appropriately and/or measure key diagnostics. Recent 
research is demonstrating that patient-specific algorithms 
can be useful for improving the sensitivity and specificity of 
this classification. Clinician-supervised machine learning is 
a good way to accomplish a patient-personalized algorithm, 
and our system is designed to enable this patient-specific 
classification in a power-efficient way [6]. 
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D. Neurostimulator and other System Features 
An existing Medtronic neurostimulator is employed in the 

system for stimulation therapy, which also serves as a 
platform for the overall bi-directional BMI system. It 
communicates through a wireless telemetry link for system 
configuration, algorithm programming, and data uplink.  A 
1MB SRAM is included on the platform for recording 
algorithm-defined or externally-generated events, time-
domain waveforms, and general data logging. The data can 
be downloaded through the wireless link for analysis and 
investigation at 11.7kbps using the 175kHz ISM band. 

III. STIMULATION-SENSE INTERACTIONS 
A significant challenge in combining sensing and 

stimulation in a bi-directional BMI is dealing with signal 
contamination.  The signals we are interested in sensing are 
on the order of microvolts, while the signals we are injecting 
(the stimulation) are on the order of volts.  The extraction of 
a biomarker that is six orders of magnitude lower than 
therapeutic stimulation is a significant challenge.  
   Several methods are employed in the prototype to allow 
for coincident sensing and stimulation. One method is 
simply to have separate leads for each function; but this 
comes at the cost of increased surgical complexity, and we 
often want to measure activity in the vicinity of our 
stimulation target.  For simultaneous sensing and stimulation 
from the same lead, careful placement of the leads and 
sense-stim configuration can take advantage of the 
reciprocity theorem of electromagnetism.  Stated 
mathematically, we attempt to design the electrode and 
anatomical approach such that    
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   Intuitively, we can think of this mathematical relationship 
imposing a symmetry constraint on the sense-stim 
configuration.  Fig. 5 shows an example where the sensing 
dipole (A ↔ B) is placed symmetrically about a unipolar 
stimulation electrode (C ↔ D) with far-field return.  When 
the dipole from therapy stimulation is orthogonal to 
the biomarker sensing vector, our chances for extracting a 
signal are greatly increased. 
   Another key method employed in all electrode 
configurations is to take advantage of the spectral filtering 
properties of the BASIC. In particular, the architecture of 
the BASIC is capable of rejecting signals that are out of its 
tuned band.  Saturation is avoided by filtering the signal 
before significant gain is applied as part of the STFT 
processing.  This allows for the possibility of delivering 
stimulation therapy in one spectral band and sensing in 
another at the same time off the same lead; but note, not the 
same electrode. This constraint is compatible with many 
deep brain stimulation (DBS) systems which have 
biomarkers well separated spectrally from therapy stim, and 
sensing dipoles bounding a unipolar-driven stimulation 
target [2].  These techniques show promise for simultaneous 
stimulation and sensing of the same neural circuit, 

establishing feasibility for real-time adaptive therapy 
titration.    
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5: Diagram of lead placement and stim configuration exploiting 
the reciprocity relationship. 

IV. PROTOTYPE SYSTEM AND MEASUREMENT RESULTS 

A. Prototype Implantable Bi-Directional BMI System 
A complete implantable BMI system was prototyped using 

established, but state-of-the-art, medical device technology. 
The prototype system is shown with a cutaway window in 
Fig. 6.  The BASIC is fabricated using a 0.8μm CMOS 
process and stacked on the SRAM to provide a module with 
small form-factor. The electrode-interconnect and algorithm 
processor are in close proximity to maintain signal integrity.  
The right side of Fig. 6 is a close-up of the side of the hybrid 
board containing the new sensing and algorithm electronics 
(accelerometer not populated in this photo).  The other side 
(not pictured) contains the stim electronics. This device has 
complete bi-directional BMI functionality and is suitable for 
chronic preclinical research.  

 
Fig. 6:  Prototype implantable Bi-directional BMI system. 

B. General System Characterization 
The prototype system including implantable circuits, 

electrodes and telemetry was tested in a saline tank with 
recorded patient data. The BASIC was verified to consume 
10μA from a 2V supply, achieving a signal resolution of 
<1μVRMS for a 5Hz power spectral estimation of two 
channels of operation (one/hemisphere). The linear support 
vector classification algorithm drew an additional 5μW to 
classify signals in real-time with 1s estimation updates. In 
addition to demonstrating basic BMI functionality, the 
system was also verified to withstand ESD, electrocautery 
and defibrillation, which is critical for a robust and practical 
BMI system. The performance is summarized in Table 1. 
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Table 1: System performance summary 
 

Minimal Detectable Signal Power (<0.5μVrms)2 
Noise Spectral Density (Time Domain) 150 nV/ Hz  
Bandpower Center Frequency (δ) dc to 500Hz, programmable 
Bandwidth of Spectral Estimate 1-20Hz, programmable 
BASIC + Classifier Algorithm Power 25μW (typical) 
Real-time Wireless Uplink 11.7kbps @ 175kHz (ISM) 
 
The ability of the system to perform sensing during the 

delivery of stimulation was also tested.  Fig. 7 shows the 
results from a test where 145Hz stimulation was delivered 
between contact 1 and the can.  A 24Hz signal, representing 
typical β band biomarkers, with 10μVPP amplitude was 
injected into the tank and sensed across contacts 0 and 2 
using the BASIC.  This was compared to results obtained 
using the same stimulation but no test signal.  The separation 
of the two curves indicates a promising ability to sense 
during delivery of stimulation, especially since most clinical 
therapy is delivered using 5V of amplitude or less. 
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Fig. 7:  Sensing capability in the presence of stimulation. 

C.  Patient-Specific Algorithms and Classification 
The intent of building this prototype bi-directional BMI is 

to provide a platform for research that is adaptable to a 
number of neurological disorders.  The common thread for 
these disorders is that biomarkers are believed to be encoded 
in LFPs as distinct fluctuations in the frequency spectrum [2, 
3].  With appropriate lead placement and BASIC tuning, it is 
possible to differentiate neural states and use this 
information for diagnostics and/or therapy titration.   

 
Fig. 8:  Spectrogram of LFP data collected from Parkinson’s patient. 

 

For example, Fig. 8 shows a spectrogram of LFP data 
collected from a Parkinson’s patient’s DBS leads; note the 
high correlation between energy in the beta band and the 

pathological symptoms associated with the disorder [2]. Fig. 
9 shows how this spectral data can be used to classify the 
patient’s state in real-time with high sensitivity and 
specificity applying support vector classification on the 
prototype trained with a supervised learning process similar 
to that described in [6].  The classified states are then fed to 
the therapy/diagnostic prototype controller to explore 
optimizing stimulator settings using algorithms or provide 
clinician feedback based on quantitative diagnostics. 

          
 

   Fig. 9:  Classification of Parkinson’s patient state based on a supervised, 
patient-specific machine learning algorithm that is downloaded into the 
BMI.  The classifier for this patient has > 95% sensitivity and specificity. 

V. CONCLUSION 
This paper presented a complete prototype bi-directional 

BMI system suitable for chronic implantation. Using 
prerecorded signals from DBS electrodes as a test paradigm, 
we demonstrated the ability to practically measure and 
classify disease-relevant brain states from derived 
biomarkers using a custom ASIC and machine learning 
techniques. The ability to sense meaningful signals in the 
presence of therapeutic stimulation was also demonstrated as 
a key to providing closed-loop control. By leveraging 
existing technology and robust sensing and classification 
paradigms, this BMI prototype represents a practical 
milestone towards “closed-loop” neuroprosthesis. 
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