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Abstract— In this paper we perform a system-level analysis
of a wireless biosignal telemetry system. We perform an
analysis of each major system component (e.g., analog front
end, analog-to-digital converter, digital signal processor, and
wireless link), in which we consider physical, algorithmic, and
design limitations. Since there are a wide range applications
for wireless biosignal telemetry systems, each with their own
unique set of requirements for key parameters (e.g., channel
count, power dissipation, noise level, number of bits, etc.), our
analysis is equally broad. The net result is a set of plots, in
which the power dissipation for each component and as the
system as a whole, are plotted as a function of the number of
channels for different architectural strategies. These results are
also compared to existing implementations of complete wireless
biosignal telemetry systems.

I. INTRODUCTION

There is a growing need for many-channel yet low-power
wireless biosignal telemetry systems. Initially such systems
have been developed for and are presently used with large
animal models (e.g., non-human primates). However, re-
cently more researchers need such systems for much smaller
animals models (e.g., rodents) and with longer operational
lifetimes (days). As a result, there is an even greater de-
mand for high-channel-count (>100) solutions that operate
at a very small power level (<5 mW). The sections below
describe our system-level analysis and optimization of each
component and the system as a whole.

II. SYSTEM DESIGN

A. Specifications

The system described in this paper is shown in Fig. 1. The
data is sensed at the electrode, and passed through a number
of gain-controlled amplifiers. The output is muxed to a time-
interleaved analog-to-digital converter (ADC). Optimized
digital circuitry then performs spike detection, sorting, and
clustering, or pass the data stream directly to the transmitter.
Optionally, spike detection may be performed by analog cir-
cuitry [1]. Before wireless transmission, the data bit-stream
is packetized, with the insertion of control data and training
sequences. The bit-stream is then modulated, encoded, and
upconverted to radio frequency before being passed to the
power amplifier and transmitted from the antenna.
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Fig. 1. Block diagram of a wireless telemetry system.

III. OPTIMIZATION
In the following sub-sections we describe our optimization

analysis of each major block in a wireless biosignal telemetry
system.

A. Analog Preamplifiers

The analog preamplifiers are needed to condition the
sensed biosignals before digitization. This typically entails
a voltage gain of 103 to 104, which is needed to match
the full scale of the ADC, and bandpass filtering from
approximately 1 Hz to 6 kHz [2], which is needed to reject
out-of-band noise and provide anti-aliasing for the ADC. The
exact values of the gain and filtering bands is, of course,
application dependent. If needed, the gain and filtering can
be distributed across several stages, where each stage consists
of a capacitively coupled amplifier (Fig. 2). The total input-
referred noise of the entire amplifier is dominated by the first
stage, as its gain suppresses the noise of subsequent stages.

The level of input-referred noise that is acceptable for a
given application is the the most important specification to
set when optimizing an analog amplifier for minimum power
and area. Optimizing the noise of the amplifier is strongly
influenced by optimizing the noise of the first stage, and
in particular, the noise of the input transistors. A number
of amplifier-optimization studies have been performed (e.g.
by Harrison [3], Chae [4], Kim [5], and Wattanapanitch
[6]). Furthermore, instead of directly quantizing the signal
amplitude with an ADC, other approaches are possible.
Examples are delta modulation [7], pulse-width modulation
[8], and wavelet transforms [9]. This paper focuses on the
ADC-based approach.

A typical front-end-amplifier design is shown in Fig. 2,
which comprises of an operational amplifier (OA), capacitors
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Fig. 2. AC-coupled amplifier.

C1 and C2 to block the dc offset of the electrolyte-electrode
interface and fix the gain at C1/C2, and resistor RB to set
the dc-operating point and low-frequency cutoff. Parasitic
capacitance Cin is due to the input capacitance of the OA.

The main source of noise in the amplifier, which originates
from MOSFET thermal and flicker noise, is represented as a
voltage source vn,amp. In the analysis presented here, thermal
noise is considered, but flicker noise has been ignored. The
noise vn,amp is inversely proportional to the square root of
bias current ID. However, increasing the bias current also
requires a larger device, which leads to increased parasitic
input capacitance Cin. When the value of Cin approaches C1,
the amplifier loading causes the effective noise at the input
terminal Vin to increase. Simply increasing the value of C1,
to reduce the relative loading of Cin and reduce amplifier
noise, is unattractive because this increases the silicon area.
For small bias currents, the parasitic loading is insignificant,
but the overall noise is high due to vn,amp. We expect to
find an optimum design that balances these effects, which is
explained in the following paragraphs.

Mathematically, the amplifier noise vn,amp from the circuit
devices (i.e., MOSFETs, resistors) is given by

v2
n,amp = β ·BW · VT

κ · ID
, (1)

where β is a proportionality constant that relates noise vn,amp

to bias current ID, VT is the thermal voltage (26.8 mV
at 37◦C), BW is the amplifier bandwidth, and κ is the
subthreshold parameter. We assume the input device is in
weak inversion [10], [11].

The following equation quantifies the effect of parasitic
loading

v2
n,in =

(
C1 + C2 + Cin

C1

)2

· v2
n,amp , (2)

where Cin is the input capacitance of the amplifier, which
is equal to α · ID, and α is a proportionality constant that
relates the input capacitance to the bias current.

Using Eqs. 1 and 2, we obtain the minimum noise vn,in

as a function of bias current ID and capacitor sizes (which
is similar to Chae’s approach [4]). The minimum achievable
vn,in for a given C1 is

min(v2
n,in) = 8 · 1 + C2/C1

C1
×

γ ·KAMP · q · L2

µ
· IC + 1− κ

IC
. (3)
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Fig. 3. Noise versus Bias Current (ID), for different capacitor (C1) sizes.

where γ is the MOSFET noise coefficient, L is the length of
the channel, q is the electron charge, µ is the charge mobility
in the channel, IC is the inversion coefficient, and KAMP is
set by amplifier architecture. Low input capacitance and good
transconductance efficiency (gm/ID) is obtained by setting
IC around 0.1.

Using Eqs. 1 and 2 (plotted in Fig. 3), we estimate that
we require a minimum current of approximately 1.4 µA for
an input referred noise of 2 µV and value of >14 pF for
C1. We also see from Fig. 3 that a noise level of 2 µV
is achievable with a minimum capacitance of 1.4 pF and
at 5 µA bias current. We find a tradeoff of 3.6 times (i.e.,
5 µA/1.4 µA) variation in current yields a corresponding
10 times (i.e., 14 pF/1.4 pF) variation in capacitor area.
This example illustrates the tradeoff between area and power,
and how it impacts high-channel-count systems. Equation 3
shows how C1 sets the noise, and hence the supply current
via Eqs. 1 and 2. Since C2 is much smaller than C1 for gains
greater than 10, C2 can be adjusted to set the appropriate gain
without significantly changing the power dissipation of the
amplifier.

B. Analog-to-Digital Converters

Low-power ADCs are a critical part of many applications,
and as such, several examples exist in the literature that are
suitable for use in a biosignal data-acquisition systems. The
required ADC specifications vary widely according to appli-
cation, but typically range from 8 to 12 bits, with a sampling
rate of 1 to 30 kHz. To estimate the power, recent literature
was surveyed, and is shown in Fig. 4. The ADC area can
also be estimated from the survey (not shown). Successive
approximation ADCs are an attractive architecture, because
of their high-power efficiency, moderate speed and medium
resolution, match the needs of biosignal acquisition.

The performance of ADCs can be normalized according
to a figure of merit (FoM ) given by

FoM =
P

2B · fS
, (4)

where P is the power dissipation, B is the number of bits,
and fS is the sampling rate.

A low FoM indicates little energy is expended for each
conversion of a sample. Lines of constant FoM are also
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Fig. 4. Comparison of Recent Low-Power ADCs

shown on Fig. 4. Several ADCs achieve close to 100 fJ
per conversion-step, with two close to 10 fJ/conv-step. We
conservatively use 100 fJ/conv-step as our benchmark for
estimating ADC power.

C. Digital Signal Processing

There are two aspects worthy of discussion regarding
digital signal processing. First, how much signal process-
ing should be performed before transmitting data off-chip?
Second, how is the chosen system implemented efficiently?

To address the question of on-chip processing, several
algorithms were chosen as candidates. These were raw
data streaming, adaptive differential pulse code modulation
(ADPCM) [12], [13], spike detection, feature extraction,
and clustering [14]. All of these options, apart from raw
streaming, are lossy to varying degrees, which means infor-
mation is lost from the original recorded data, either through
lossy compression or discarding waveform details. Table I
shows the power per channel for different options, with their
corresponding reduction in data rate of processed signals per
channel. Immense reductions in data rate can be achieved,
which in turn eases the load on the transmitter. The amount
of data compression is dependent on the spike firing rate.
Table I assumes a firing rate of 100 Hz [15], a 10-bit ADC,
and 48 samples/spike.

TABLE I
DSP POWER FOR DIFFERENT LEVELS OF PROCESSING

µW/chan kbps/chan
Raw Data 0 300

Spike Detect 1 48
Feature Extraction 4 10

Clustering 8 0.4

The three main tasks of spike processing are (1) detection
and alignment, (2) feature extraction, and (3) clustering. In
conventional circuits, only detection is performed on chip,
with feature extraction and clustering delegated to off-chip
hardware. However, feature extraction and clustering greatly
reduces the amount of data required to represent a spike, and
hence can reduce the power required for the transmitter. This
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Fig. 5. Power estimates obtained from Synopsys for NEO, Spike
Output mode. The total power Ptotal is divided into switching power
Pswitching and leakage power Pleakage.

leads to lower overall system power, and allows for a large
number of channels to be recorded.

Of the algorithms investigated in [14], the following
algorithms were shown to be an efficient trade-off between
hardware complexity and performance. These were (1) non-
linear energy operator (NEO) for detection, (2) maximum
derivative for alignment, and (3) discrete derivatives for
feature extraction.

To implement these algorithms, a Matlab/Simulink-based
graphical design environment, with the Synplify DSP block-
set, was used. This Simulink model provided a bit-true,
cycle-accurate representation of the design. This design
process also avoids design re-entry since both the hardware
design and test vectors are auto-generated from the tool.
Another key advantage, due to the automation, is swift
evaluation of different architectural trade-offs.

Furthermore, to reduce the power and area of the design,
three circuit techniques were used. Supply-voltage scaling
was used to minimize the transition energy of the logic,
with an optimum value around 0.55 V in a 1-V technology.
Next, parallel data streams were sequentially fed to a single
hardware block running at higher speed (Fig. 5 and 6).
This reduced the silicon area, and also leads to less leakage
power for the design. As the design is register dominated,
16× interleaving only resulted in a 35% decrease in area.
Lastly, an automated-wordlength-reduction tool was used to
optimize the wordlengths throughout the design.

The combined result of these techniques leads to an
estimated 2 µW per channel for a feature-extraction digital
signal processor.

D. Wireless Transmitter

When designing a wireless telemetry link, one must con-
sider the physical limitations of the transmitter, the channel
(i.e., the medium between the transmitter and the receiver),
and the receiver. A full wireless-link budget, which calculates
the required transmitter power level, starts at the output
of the transmitter and ends with demodulated data from
the receiver. An expression for the required transmitted
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power level as a function of the critical physical limitations
involved, is given by

PTX =
(2 · k · T ·RS) ·NF · SNR ·BW

PL ·RFM ·GRX ·GTX
. (5)

The first group of terms represents the noise generated
by a 50-ohm resistor (RS) in a matched RF system, which
takes into account the impedance at the antenna. The second
term is the noise figure NF , which is the ratio of the total
noise at the output of the receiver, to the noise contribution
due to a 50-ohm resistor passed through the receiver. The
third term is the SNR required for decoding the digital
data with a bit-error rate of less than 10−6. Although this
error rate may seem high, conventional coding strategies can
be used to reduce the error rate to a level required for a
given application [16]. The last term of the numerator is the
bandwidth of the communication channel. The terms of the
denominator involve critical components of the communi-
cation channel. The path loss PL, represents the reduction
of transmitted power as a function of distance from the
transmitter. Rayleigh-fading margin RFM takes into account
the changes in received power due to the constructive or
destructive overlap of signals arriving from multiple paths
(i.e., multipath interference). The transmitter antenna gain
GTX takes into account the impact of the antenna design
on its ability to efficiently transmit power to the channel.
Similarly, the receiver antenna gain GRX takes into account
the impact of the design of the receiver antenna on its
ability to receive power from the channel. This term will
also include gain achieved through multiple-input-multiple-
out (MIMO) strategies when used, although we expect that in
this application there will be only a single input (i.e., SIMO)
[16].

Ultimately, the multipath issue imposes a limit on the
maximum data rate that can be achieved for a given com-
munication channel. A transmitted signal may take multiple
paths to the receiver. As a result, there is a spread in arrival
times of a given transmitted signal at the receiver. The
symbol length is the name given to the duration of time
used to transit a unique representation of a bit pattern. The

symbol time must be significantly greater than the spread in
arrival times. Typically, a factor of 10 is considered to be
acceptable. The delay spread (i.e. the rms value of arrival
times at the receiver) of a typical room is approximately
20 ns [17], [18]. Given the 10× design rule-of-thumb, the
symbol length must be at least 200 ns (i.e., the symbol rate
must be less than 5 · 106 symbols/s). By encoding two bits
into each symbol, the maximum data rate is 10 Mbps, at the
cost of transmitter complexity.

Numerical values for each component of the link budget
are given in Table II (which shows Eq. 5 in log form) and
are either directly calculated or taken from literature. The
result of all of this analysis, is that the minimum power
delivered by the transmitter to the channel must be at least
12.6 µW (-19 dBm). Of course, this value is dependent
on the selection of the modulation scheme, the design of
the individual components, and the specific needs of the
application. Implementing an efficient transmitter to deliver
the required output power is still an active research topic.
Scaling from previous work [19] indicates that less than
3 mW is feasible.

TABLE II
SIMPLE RF LINK BUDGET

Noise Power -174 dBm 50 Ω at 300 K per Hz
Receiver NF 8 dB Conservative Estimate
Required SNR 10 dB BPSK @ BER=10−6

Bandwidth BW 70 dB 10 MHz
Path Loss PL 62 dB n = 2, d = 10m, f = 2.4GHz
Rayleigh Fading RFM 20 dB
RX Diversity -15 dB
Required PTX -19 dBm

E. Total System Power

Now that we have power estimates for the main blocks
the wireless telemetry system (Fig. 1), we can choose the
optimal system configuration. For this analysis, we use
neural spikes as the signal of interest. Several different
system configurations are explored (Fig. 7), including 3 DSP
methods, in the following section.

IV. RESULTS

The five configurations are (1) raw data, (2) analog de-
tection, (3) digital detection, (4) feature extraction and (5)
clustering. In raw-data mode, each channel is digitized and
directly transmitted without any additional processing. This
mode results in the highest transmitter data rate. Analog-
detection mode is used to gate the ADC, which reduces
the power as the ADC is only on a fraction of the time,
and only spike data only is transmitted. Digital-detection
mode, which uses the digitized samples to detect a spike,
requires that the ADC operates continuously. Although a
digital detector can be implemented with lower power than
an analog implementation, again only spike data is transmit-
ted. Feature-extraction mode entails calculating waveform
characteristics of the detected spike and transmitting only
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these spike features. Finally, clustering mode determines a
best match between a detected spike and a library of spikes
(user-configured or trainable), and transmits a short spike ID.

For a system with raw streaming (no on-chip DSP, as
shown in Fig. 7a), a maximum of 52 channels are imple-
mentable within a 10 Mbps limit, which is short of our 100-
channel target. The power for each block is shown in Figs.
8 and 9 as a function of the number of channels. A burst-
mode transmitter is assumed, in which the transmitter and
frequency synthesizer are turned on every Tlatency seconds,
transmits a packet of data from the recording channels, and
then shuts down again. After enabling the synthesizer, it
takes Tstart seconds for its output to stabilize. Hence there
is a finite amount of wasted energy due to the synthesizer
startup [20]. This can be reduced by using a faster-start-up
synthesizer or a longer buffer (leading to longer latency).
For low number of channels (bottom axis) or data rate
(top axis), the synthesizer is able to be switched off after
the packet is sent. At higher number of channels (or data
rate), the synthesizer remains on as its start-up time is
greater than the time before the next packet. The analog
front-end (preamplifiers and ADC) run continuously, and the
power amplifier (PA) is on only when the packet is being
transmitted. The total power for 52 channels is 5.8 mW,
or 110 µW per channel. As shown in Fig. 8, for less than
2.5 Mbps, the synthesizer power, due to its slow start-up, is
significant compared to the PA power (and hence transmitted
signal power).

Introducing DSP to detect a spike and only transmitting
spike data (Fig. 7b) reduces the amount of transmit data.
Compared to the raw system (Fig. 7a), the DSP power
required is negligible, the data rate has been reduced to 20%,
and the total power reduced to 54%. With this, approaching
100 channels is now possible using a 3.2-Mbps link. In this
analysis a 100 Hz spike detection rate was assumed. Lower
rates would provide even greater power savings.

We see that digital processing can be implemented with
low power, which greatly reduces the amount of data to be
transmitted. This relaxes the requirements of the transmitter,
or allows a higher number of channels to be implemented.
Table III summarizes the total system power for all modes,
versus the number of recording channels. Entries in bold
indicate possible system configurations from a low-power
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perspective.

V. CONCLUSION

The optimization of several key blocks of a wireless
telemetry system have been described. The optimization of
amplifier noise and area, as a function of capacitor size
and bias current, has been described. State-of-the-art ADCs
have been reviewed, and shown to have sufficiently low
enough power dissipation to be compatible with a low-
power biosignal telemetry system. Digital signal processing,
at both the algorithm and circuit level have been discussed,
along with strategies for minimizing power (i.e. selecting an
NEO algorithm to maintain reliable spike detection, voltage
scaling, and pipelining with time-interleaving).

We have shown a system design for wireless telemetry
that enables a large number of channels. Previously published
work is shown in Fig. 10. Analog implementations [21], [22]
are suitable for low channel counts, and have higher power
compared to the other systems. Spike-detection systems [23],
[24] show high channel counts and/or lower power per
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TABLE III
TOTAL SYSTEM POWER (MW) FOR DIFFERENT LEVELS OF

PROCESSING, FOR 16 TO 1024 CHANNELS

N = 16 N = 64 N = 256 N = 1024
Raw Data 67 270 1078 4314

Analog Detection 11 44 175 700
Digital Detection 11 44 175 702
Feature Extraction 3 10 40 160

Clustering 0.42 1.67 6.67 26.7
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Fig. 10. Implemented Wireless Neural Recording Systems: Michigan [21],
[23], Utah [24], UCSC [25], TBSI [22]. Designs are not normalized (for
bandwidth, input referred noise, range, and features.)

channel. Finally, spike sorting [25] demonstrates the potential
(and even necessity) for increasing local-digital-signal pro-
cessing to facilitate a low-power system. The estimates for
our proposed system show the feasibility of a high-channel-
count system (>400 with feature extraction and clustering),
while maintaining low power (<10 mW).
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