
  

  

Abstract— Chronic sleepiness is a common symptom in the 

sleep disorders, such as, Obstructive Sleep Apnea, Periodic leg 

movement syndrome, narcolepsy etc. It affects 5% of the adult 

population and is associated with significant morbidity and 

increased risk to individual and society. MSLT and MWT are 

the existing tests for measuring sleepiness. Sleep Latency (SL) 

is the main measures of sleepiness computed in these tests. 

Existing method of SL computation relies on the visual 

extraction of specific features in multi-channel 

electrophysiological data (EEG, EOG, and EMG) using the 

R&K criteria (1968). This process is cumbersome, time 

consuming, and prone to inter and intra-scorer variability. In 

this paper we propose a fully automated, objective sleepiness 

analysis technique based on the single channel of EEG. The 

method uses a one-dimensional slice of the EEG Bisprectrum 

representing a nonlinear transformation of the underlying 

EEG generator to compute a novel index called Sleepiness 

Index. The SL is then computed from the SI. A strong 

correlation (r=0.93, ρ=0.0001) was found between technician 

scored SL and that computed via SI. The proposed Sleepiness 

Index can provide an elegant solution to the problems 

surrounding manual scoring and objective sleepiness. 

I. INTRODUCTION 

leepiness is defined as the probability of a person to fall 
sleep at a given time[1]. Excessive sleepiness is one of 
the common symptom in several sleep disorders, such 

as, Obstructive Sleep Apnea (OSA), Upper Airways 
Resistance Syndrome, Periodic Leg Movement Syndrome 
(PLMS) etc[2]. It is estimated to affect approximately 5% 
of the adult population [3]. It is associated with the 
increased risk of road and work related accident and is 
harmful to both individual and the society[4, 5]. According 
to a report[6] the total cost of sleepiness related accidents in 
USA is estimated to be between $43.15 billion and 56.02 
billion per year. AASM [7] definition of micro-sleep is: 
"…an episode lasting up-to 30s during which external 
stimuli are not perceived. The neuro-physiological signals 
suddenly shift from waking characteristics to sleep". It is 
generally believed that micro-sleep is closely associated 
with excessive sleepiness. Even though diurnal micro-sleep 
is an important phenomenon related to sleep disturbances, 
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there is no objective system of measurements to detect 
micro-sleep or express its severity. The standard clinical 
tests to measure sleepiness are Multiple Sleep Latency Test 
(MSLT)[8] and Maintenance of Wakefulness Test 
(MWT)[9]. The MSLT and MWT are the objective tests, 
which measure the individual ability to fall asleep and 
ability to remain awake respectively. In MSLT/MWT, a 
series of nap opportunities (4-6) are presented to the subject 
undergoing test at 2 hour intervals beginning approximately 
2 hour after morning awakening. Each recording goes for at 
least 20 minutes in MSLT and 40 minutes in MWT. In 
these tests, several neuro-physiological signals (at-least 7, 
4-EEG, 2-EOG and 1-EMG) are continuously monitored 
and recorded. Sleep technicians have to simultaneously 
look at multiple signals and apply several rules [10] to 
identify sleep onset. Sleepiness is then expressed by the 
measure Sleep Latency (SL), which is the length of time 
required to fall sleep. 

Manual scoring of SL is a tedious and subjective process 
resulting in inter and intra-rater variability[11]. The scorers 
from different laboratories tend to agree less than scorers 
from the same laboratories, due to differences in 
interpretation and subjective implementations. Moreover 
MSLT and MWT are clinical tests and need proper sleep 
laboratory and trained sleep technicians to perform them. 
There are no tests available to detect inadvertent sleep onset 
in real time and which can be performed in any professional 
work environment to measure sleepiness level. To address 
these issues, in this paper we present a novel index called 
Sleepiness Index (SI) to quantify sleepiness via computing 
the time-density of 'micro-sleep events'. The method is fully 
automated and uses EEG data from just single channel. The 
SI computation is completely independent from other 
physiological signals such as EOG or EMG which are 
needed by traditional R&K[10] based methods.  Our 
method is based on the Higher-Order-Statistics (HOS), 
which makes the technique robust against Gaussian noise 
present in EEG measurements[12, 13]. In the next section 
we present our method to compute SI. 

II. METHOD 

The data was recorded using clinical Polysomnography 

(PSG) equipment (Siesta, Compumedics
®). The patient 

preparation, and instrumental set-up were done by an 

experienced sleep technician according to AASM 

guidelines[2]. Table 1 describes the demographic details of 

the subjects studied. Database A: From each subject in this 

database, routine PSG [2] data was collected. EEG data was 
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recorded from both hemispheres using electrode positions 

C4, C3, A2, and A1, based on the standard international 10-

20 system of electrode placement. The subject population 

includes, individual with symptoms of sleep apnea. 

Database B: This database contains data from the subjects 

referred for the MSLT or MWT tests. Typical 

physiologicalsignals which are recorded in MSLT and 

MWT are (i) 4 channels of EEG (C3, C4, O1, O2 reference 

to A1 and A2). (ii) left and right EOGs, and (iii) sub-

mentalis EMG. EEG signal was sampled at fs = 256Hz, 

with a gain of 125µV. For the work of this paper we have 

used EEG data recorded from position C4 over the skull. 

We segmented the collected data into sub-records of length 

M samples for further analysis. Note in the field of sleep 

medicine these segments are called as ‘epochs’. We use the 

terms segments and epochs  

A. HOS based analysis of EEG 

Let xi
(k), i = 1,2,3…..,N, denote the k-th sample of the i-th 

segment of digitized EEG data where N is the total number 
of segments in a recording. In this paper we model xi

(k) as: 
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where ei

(k) is a white non-Gaussian process, and hi
(k) is a 

stable, possibly non-minimum phase kernel representing the 
underlying system generating the EEG segment x

i
(k). The 

term w
i
(k) represents measurement noise within the 

frequency band of interest, which is traditionally modeled 
as a white Gaussian process. In this work, we relax this 
constraint and allow the measurement noise to be either a 
white or colored Gaussian noise, or, any noise process with 
a symmetrical probability density function.   
1) Filtering of EEG segments: EEG is a low-frequency 
signal and the frequency band of interest to us is contained 
within 1-45Hz. Thus we filtered x

i
(k) using a 5th order, 

zero-phase digital Butterworth bandpass filter f(k) with 
lower and higher cut-off frequency fl=1Hz and fh=45 Hz to 
remove out-of-band noise, including the ubiquitous power 
line interference at 50Hz. Let the filtered segments xi

(k) be 
denoted by y

i
(k). 2) The Bispectrum estimation: The 

bispectrum can be estimated via estimating the 3rd order 

cumulant[13], Cˆ
yi
(τ1,τ2) of the yi

(k), and then taking a 2D-
Fourier transform (2). This method, known as the indirect 
method of estimating the bispectrum, was followed in this 
paper.  
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The bispectrum obtained using (2) will be a complex 
number. Unlike the power spectrum (2nd order statistics) 
based on the autocorrelation, bispectrum preserves Fourier 
phase information. In contrast, power spectrum (or 
autocorrelation based) techniques lose phase information, 
and the EEG System Response estimated from it will be the 
minimum-phase equivalent of the original response.  

In [12] we considered the problem of signal 
reconstruction from the bispectrum, and proved that any 1-
dimensional slice of the bispectrum carries sufficient 
information to estimate a system response within a time-
shift, as long as the chosen slice is not parallel to any one of 
the frequency axes or to the diagonal at 135 degrees. In this 
paper, we rely on that result to reduce the computational 
complexity of the HOS techniques. The flexibility offered 
by the choosing arbitrarily oriented and shifted oblique 
slices also give us the advantage of avoiding unfavorable 
regions in the bispectrum [12]. 3) The Bispectogram Time 

Series (BTS) : In the frequency domain, a quantity 

Pi(ω;φ,ρ) can be defined for each data segment xi(k) such 

that Pi(ω;φ,ρ) = B
yi
(ω, φω+ρ) describes a one-dimensional 

slice inclined to the ω1-axis at an angle tan
-1φ and shifted 

from the origin along the ω2-axis by the amount ρ, (-π< ρ 

<π) [12]. The slice Pi(ω;φ,ρ) carries complete information 
on the EEG system response (i.e. the underlying EEG 
generating system) according to the model we have 
adopted. We can describe the data in a graphical way by 

defining a matrix SB(ω;φ,ρ) such that: 

SB(ω;φ,ρ) = [P0(ω;φ,ρ) | P1(ω;φ,ρ) |….,Pi(ω;φ,ρ),…| PN-

1(ω;φ,ρ)]                                          (3) 

where the ith column of SB represents a vector [Pi(ω;φ,ρ), -π 

< ω <π]
T. We call this matrix the Slice-Bispectrogram. We 

form a times series, called Bispectogram-Time-Series 

(BTS, ξf), by considering a fixed ω,  i.e. ω = ω0, ω = ω1, ω2 

…, ωN-1 as follows:  
 

Time series N-1(ξN-1): 

SB(ωN-1;φ,ρ) = {P0(ωN-1;φ,ρ), P1(ωN-1;φ,ρ), …. ,Pi(ωN-

1;φ,ρ),… , PN-1(ω1;φ,ρ)}.                  (4) 

TABLE 1: PATIENTS DEMOGRAPHIC DETAILS AND SLEEP 
LATENCY REULTS 

Pat.ID Age Sex RDI SL-TS SL-SI 

Database A - PSG Data 

1 45 F 0.6 38 36.5 

2 34 F 1.5 20 22.25 
3 62 F 3.5 48 51.25 
4 63 F 4.1 13 14.75 
5 36 F 4.7 21 6 

6 52 M 4.9 19.5 22.75 

7 62 F 5.1 13 14.25 

8 44 F 6.8 15.5 17 
9 50 M 20.8 48 51.25 

10 62 M 37.5 14 11 
11 56 F 40.1 31.5 25.5 
12 53 M 40.3 15.5 22.25 
13 63 F 45.8 23 30.75 
14 30 F 49.9 35.5 34.5 
15 50 F 0 8 8.75 
16 44 M 2.4 30.5 27.75 
17 73 F 3.2 48 63.5 
18 58 F 3.3 48 45.5 
19 72 M 4.8 32.5 33 
20 42 M 4.8 36.5 35 

Database B - MSLT Data 

21 34 M  5.5 4.34 

22 57 F  6.5 4.53 
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Symbol ξf represents the Bispectogram-Time-Series at 

frequency f. In this paper, we illustrate that it is possible to 

choose particular values for 'f' such that the Bispectogram-

Time-Series, ξf carries sufficient information to characterize 

micro-sleep events. In the next section we give some of the 

implementation details to compute SI and present our 

results. 

III. RESULTS 

The length of data segments (M) were set to the standard 
‘epoch length’ of M=30s as used in routine sleep scoring 
and the segment overlap was set to 15s. Thus, the sleep data 
was assessed every 15s, based on the last 30s data. The 
method described in this paper needs EEG data only from 
one channel. Without a loss of generality (see [12]), we set 

φ=1 and ρ=0 in (3). The slice of the bispectrum considered 

to form bispectogram, is inclined to the ω1-axis by 45 
degrees and passes through the origin (i.e. the line 

described by ω1=ω2 in the (ω1, ω2)-plane) as symbolized by 

SB(2πf;1,0).  

A.  Bispectogram Time Series (BTS, ξf=20) 

From the Slice-Bispectogram (SB) the Bispectogram-

Time-Series (BTS, ξf) was estimated. For the results 
reported in this paper, we set f=20Hz for its ability to 
discriminate Sleep/Wake states. Note that the entries of 
BTS are complex valued. For the rest of the paper, let us 

define ξ20=Abs(SB(2πf;1,0)). Figure 1(a) and Fig.1(b) show 

the ξ20 and technician scored Sleep/Wake states for whole 
night PSG data. The EEG data for this figure is taken from 
subject ID 6. The magnitude of the 20Hz component 

consistently remained low during the sleep; however it 
increased considerably with the episodes of Wake states 
during the night. This characteristic feature of the BTS was 
consistently seen in all the patients in our database.  

B.  Micro Sleep Events 

In Fig.2(a) we show the time series ξ20 where a person is 
falling sleep. Fig.2(b) shows the technician scored 
Sleep/Wake states. In this figure we show data for the first 

200 epochs from the subject ID 1. Fig.2(a) and Fig.2(b) 

graphically illustrate the close correspondence of the ξ20 
and the sleep/wake states. Moreover, it is seen that the 
gradual development of the sleep over time is captured well 

by the gradual change in ξ20. The red marks under the series 

ξ20 indicate micro-sleep events. Note that the technologist 
has not attempted to identify states of micro-sleep. It is of 
great interest to explore how the micro-sleep events defined 

via ξ20 correspond with micro-sleep defined by the AASM. 
As an illustration, in Fig.3 we show the EEG (C4-A1, C3-
A2), EOG and EMG data from the epochs 35, 36, 37, and 

38 as marked on Fig.2(a). Epochs 35 and 36 of Fig.3 clearly 
follow micro-sleep characteristics as defined by AASM, 
whereas epochs 37 and 38 do not. Micro-sleep defined by 

AASM agrees with the micro-sleep events defined via ξ20. 

C.  Sleepiness Index 

The time series ξ20 is highly stable in characterizing sleep 
and wake states. The wake states correspond to high values 

of ξ20; sleep states are associated with a consistently low 
magnitude (s0) approaching zero for all practical purposes. 

We have noted that the magnitude of ξ20 gradually moves 
from a high value towards s0 as a person is falling asleep. 

Fig. 1.  (a) Bispectogram Time Series ( ξ20), (b) Technician Scored 

Sleep/Wake states.  
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Fig. 2.  (a) BTSs at frequency 20Hz,  ξ20. (b) Technician scored sleep 
states. Red mark in (a) indicates the 'micro-sleep' events in the 
bispectrum slice time series. 

 

(a) Bispectrum Time Series, ξ
20

0 200

(b) Technician Scored Sleep/Wake states

 

 

Threshold for 
MicroSleep Event

Physiological Data 
Shown in Fig.3

Microsleep
event

Wake

Sleep

 
Fig. 3.  Physiological data (EEG, EOG and EMG) corresponding to the 

epoch number 35, 36, 37 and 38 in fig.2.  
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Before finally settling down to s0 corresponding to the state 

sleep, the magnitude of ξ20 briefly touches s0 several times 
(see Fig.2 (a)). Such events are associated with EEGs that 
are characteristic of sleep, and we define them as micro-

sleep events. We propose to exploit the stability of the ξ20 
time series to identify micro-sleep events and then use them 
to form a measure of sleepiness, termed the Sleepiness 

Index (SI). We define the SI as the fraction of the time the 

magnitude of ξ20 maintained its value corresponding to 
sleep, i.e., s0, computed over a time frame of 150 seconds. 
Thus, SI can vary from 0 (no episodes of micro-sleep 
during the current 150s period) to 1 (micro-sleep/sleep 
events completely covers the current 150s period). This 
definition allows the SI index to be computed real time, 
making it a useful tool to monitor the sleepiness of an 
individual. Sleep Onset can be defined as the instant at 
which SI reaches 1, and remains at 1 for at-least next 6 
points of SI. The Sleep Latency (SL) can be defined as the 
time duration from the ‘lights out’ to the Sleep Onset.  

To test the capability of the SI to estimate the sleep onset 
and the SL, we computed SI for the subjects in Database A 

and B. Figure 4 show the ξ20, SI and technician scored 
sleep/wake states for the subject ID 18. Table 1(b) shows 
the sleep latency computed from SI (SI-SL) and technician 
scored SL (TS-SL). Table 2 compares the SI-SL with that 
from TS-SL for all the 4 naps in the MSLT test patients. 

According to Fig.4, ξ20 and SI closely matches with the 
technician scored sleep/wake states. There is a significantly 
high correlation (r=0.93, ρ=0.0001, t=10.38) between SI-SL 
and TS-SL for the subjects in database A. There was very 
small insignificant negative bias of -0.72 (ρ=0.59, t=-0.55) 
min in computing SL from the sleepiness index. The SI 
based approach, however, has been fully automated and 
provides consistent results. It does not depend on multiple 
physiological signals; only one channel of EEG is sufficient 
for the purpose. On the contrary, sleep technologist requires 
multiple signals and depends on subjective methods to 
estimate the SL. 

IV. CONCLUSION 

In this paper we presented a fully automated method to 

compute sleep latency (SL) and a novel objective measure 

of sleepiness level called, Sleepiness Index (SI). The 

method is based on the higher-order spectral analysis of 

EEG. Our results from the database of 22 patients show that 

the SL computed from the SI strongly correlates with that 

computed by sleep technician. MSLT and MWT are the 

main measures of sleepiness used in the clinical 

environment. They are, however, complicated tests 

requiring access to sleep laboratories and the services of 

experienced sleep technologists. Even then, the 

computations of parameters such as the SL and sleep onset 

are fraught with subjective elements. Our ability to compute 

the parameters reliably, objectively and using a single 

channel of EEG should make a dramatic impact on the 

diagnosis of sleep disorders. 
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Fig. 4. (a) Bispectogram Time Series (ξ20), (b) SI computed from ξ20. 

(c) Technician scored sleep state/wake. Data from the patient id 18. 

0 50 100 150 200
0

ξξ ξξ
2
0

0 50 100 150 200

0

1

S
le

ep
in

es
s 

In
d
ex

0 50 100 150 200

S
le

ep
 S

ta
te

Epochs

Wake

Sleep

Sleep Onset

TABLE 2: COMPARISON OF SLEEP LATENCY (SL) 
COMPUTED FROM SLEEPINESS INDEX (SL-SI) AND 

TECHNICIAN SCORED (SL-TS). SL COMPUTED IN MINUTES. 

  Nap 1 Nap 2 Nap 3 Nap 4 

Subject 
ID 21 

SL - TS 7 4 2.5 8.5 

SL - SI 5.6 4.3 1.8 6.7 

Subject 
ID 22 

SL - TS 5.5 11.5 6 3 

SL - SI 3.9 8.1 3.3 2.8 
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