
  

  

Abstract—Obstructive Sleep Apnea (OSA) is a highly 

prevalent disease in which upper airways are collapsed during 

sleep, leading to serious consequences. The standard method of 

OSA diagnosis is known as Polysomnography (PSG), which 

requires an overnight stay in a specifically equipped facility, 

connected to over 15 channels of measurements. PSG requires 

(i) contact instrumentation and, (ii) the expert human scoring of 

a vast amount of data based on subjective criteria. PSG is 

expensive, time consuming and is difficult to use in community 

screening or pediatric assessment.  Snoring is the most common 

symptom of OSA. Despite the vast potential, however, it is not 

currently used in the clinical diagnosis of OSA. 

 In this paper, we propose a novel method of snore signal 

analysis for the diagnosis of OSA. The method is based on a 

novel feature that quantifies the non-Gaussianity of individual 

episodes of snoring. The proposed method was evaluated using 

overnight clinical snore sound recordings of 86 subjects. The 

recordings were made concurrently with routine PSG, which 

was used to establish the ground truth via standard clinical 

diagnostic procedures. The results indicated that the developed 

method has a detectability accuracy of 97.34%. 

I. INTRODUCTION 

HERE are three syndromes of sleep apneas: obstructive 

[1], central [2] and hypopnea [3]. Obstructive sleep 

apnea (OSA) is a sleep disorder that is commonly 

diagnosed by means of overnight sleep studies or 

Polysomnography (PSG). Sleep apnea refers to episodes of 

non-breathing events lasting equal to or more than 10 

seconds [4]. A PSG test can determine the number of 

obstructive breathing events per hour. This calculation is 

commonly known as the Respiratory Disturbance Index 

(RDI). It is a representation of the total number of apneas, 

hypopneas and respiratory arousals that occur per hour 

during sleep. The RDI value is utilised to diagnose and 

evaluate the degree of a subject’s OSA disorder. Typically, 

patients with (RDI<10) are considered normal while those 

with (RDI≥10) are diagnosed with OSA [1]. Obstructive 

apnea episodes, at times, awaken the patient, resulting in 
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sleep fragmentation. During apnea episodes, the level of 

oxygen may drop to dangerously low levels, which may then 

result in cardiac arrhythmias, and in turn, can be fatal. 

Hence, individuals with sleep apnea are more prone to heart 

attacks and strokes. Additionally, other effects of sleep apnea 

may include depression, irritability, sexual dysfunction, 

learning and memory difficulties, and fatigue [5].  

Many patients who have treatable OSA go undiagnosed by 

both the primary care physician and the specialist [6, 7, 8]. 

OSA is a syndrome that pervades the general population and 

is currently under-diagnosed [9]. Due to this, several 

approaches for finding simpler and more practical methods, 

than PSG, for the detection and classification of OSA have 

been studied in the literature. These studies all conduct 

diagnosis of OSA through utilising an extractable feature of 

the snore sounds. The features employed include: energy 

[10], zero-crossing rate [10, 11], power spectrum [12], 

Linear Predictive Coding (LPC) coefficients [13], formants 

[14] and, pitch and jitter [15] of snore signals. In addition, 

more computationally complex methods such as Higher-

Order Statistics (HOS) of snore signals have also been 

employed [16].  These techniques have provided strong 

evidence that snoring carries sufficient evidence to 

characterize OSA. However, the performance of these 

methods can be further improved in terms of the 

sensitivity/specificity of detection and the computational 

complexity.  

In this paper, we develop a feature based on the non-

Gaussianity of snore episodes as a means of characterizing 

the severity of OSA. We call the proposed feature the Non-

Gaussianity-Index (NGI). The NGI is computed for each 

individual snore episode and then an overall measure is 

computed for each patient to serve as an index of the severity 

of OSA.  The proposed method is fully automated and free 

from subjective interpretation.  

 The ability to diagnose OSA reliably, based on a single 

channel of non-contact snore measurement, has the potential 

to change the way OSA epidemic is managed throughout the 

world. The low-cost snore acquisition instrumentation does 

not need expert humans to operate, and will be suitable for 

population screening and pediatric use. The large amount of 

time a sleep expert has to devote to the manual scoring of 

overnight data can be saved, due to the availability of 

reliable automated technology.  

II. DATABASE 

The database consisted of 86 subjects, both male and 

female, with RDI’s ranging from 0.5 to 106.7. The subjects 
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had undergone a PSG assessment at the Respiratory and 

Sleep Disorders Unit of The Princess Alexandra Hospital, 

Brisbane, Australia. The data was recorded during the 

overnight sleep study. This was carried out using a high 

fidelity, computerised sound acquisition system. 

The PSG data was gathered from a Compumedics sleep 

acquisition system, and consisted of EEG,EOG, ECG, EMG, 

Leg movements, respiration nasal air flow, nasal pressure, 

respiratory movements, blood oxygen saturation, breathing 

sounds and the body position. 

The sound acquisition system consisted of a pair of 

matched low noise microphones having a hypercardiod beam 

pattern (Model NT3, RODE, Sydney, Australia). The 

nominal distance from the microphone to the mouth of the 

patient was 50 cm, but could vary from 40 to 70 cm due to 

patient movements. A professional quality pre-amplifier and 

A/D converter unit (Model Mobile-Pre USB, M-Audio_, 

California, USA) was used for data acquisition, at a sampling 

rate of 44.1 kHz and a 16 bits/sample resolution. The 

recorded data was a collection of Snore Related Sounds 

(SRS). 

III. METHOD 

The method proposed in this paper assumes the following 

SRS signal model: 

 

                    x n
@ A

= s n
@ A

+ b n
@ A

+ y n
@ A

 (1) 

 

Where, x[n] represents the discrete-time SRS signal, b[n] 

the background and instrument noise with Gaussian 

distribution, and y[n] the non-Gaussian background noise or 

activities, such as speech, equipment fumbling and testing, or 

thumping sounds. However, as the data acquisition process 

was carried out in a controlled environment the non-

Gaussian processes modeled by y[n] were later eliminated. 

Hence, (1) was simplified to: 
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 (2) 

 

Furthermore, it can be said that the nature of the s[n] 

component of the SRS signal varies; s[n] at times represents 

snoring sounds made by the studied subject. These sounds 

have a periodic nature and thus posses a non-Gaussian 

distribution. However, s[n] could also represent breathing 

sounds of the subject. In this case, s[n] resembles a white 

process with a Gaussian distribution. 

A. Signal Pre-Processing 

Initially, the input SRS signal, x[n], was passed through a 

decimator to obtain a lower sampling rate, as the bandwidth 

of snore signals is less than 10 kHz and the data required to 

carry out normal probability analysis is sufficient within this 

bandwidth. In addition, decimation of signals with high 

sampling rates could contribute to the removal of high 

frequency noise. 

The similarities between the generation mechanism of 

human speech and snore signals led to the application of the 

pre-emphasis filter. In speech analysis, a -6 dB/octave roll-

off in the spectrum of voiced speech exists. This is due to the 

voiced excitation source and the radiation from the mouth. 

The pre-emphasis filter is utilised to correct this roll-off. 

Hence, this filter was employed in the pre-processing stage 

of the SRS signal. The cut-off of the pre-emphasis filter can 

be set by altering α in (3), which is typically set to (α = 0.96) 

in speech processing applications [17]. Hence, this value was 

utilised for this application. 

 

               x n
@ A

pre@ emphasised
= x n
@ A

@αx n@1
@ A

 (3) 

 

B. Non-Gaussianity Index (NGI) 

A new index, called the Non-Gaussianity Index (NGI), 

hereon referred to using the symbol ψ, was developed to 

conduct the SRS signal analysis. The developed index 

provides a measure of non-Gaussianity of a given segment of 

data. To obtain ψ, normal probability plot analysis was 

employed. The normal probability plot can be utilised to 

obtain a visual measure of the Gaussianity of a set of data.  

To obtain ψ, for x[n], the inverse of the normal 

Cumulative Distribution Function (CDF) for the data was 

first calculated: 
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µ = mean of x n
@ A

 

σ = standard deviation of x n
@ A

 
 

The probabilities were then assigned to p in (4) to obtain 

the required γ values for plotting the normal probability plot 

of the data in x[n]. However, the normal probability plot 

conducts a comparison between γ and probabilities of a 

would-be, or reference Gaussian dataset, if x[n] was to 

represent a Gaussian data segment. This is thus calculated 

and referred to as the probability set g in (6).   

The deviation of the probability plot of the analysed data 

(γ) to its reference Gaussian probability plot (g) was chosen 

as the measure of non-Gaussianity, or ψ. Linear regression 

was utilised to acquire a measure for this deviation and thus 

calculate ψ. It must be noted that g[i] and γ[i] represent the 

probabilities of the reference normal data, and the analysed 

data, respectively, with i ranging from the values 1 to N: 
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After calculating ψ, the obtained values were assigned to 

each analysed segment as an obtained score representing the 

frame of data. x[n] was then windowed using rectangular 

windows of length L, and ψ values within the segments of 

length L of x[n] were thresholded using threshold value β as 

displayed below: 

 

x n
@ A

for n = 1,2,3, …N
b c

=
1 if , ψ > β

0 if , ψ ≤ β

X

\

Z

 

 

Finally, L-length segments of x[n] that contained frames 

with ψ values above the threshold β were marked as apneaic 

snore episodes. A count of the apneaic snore episodes over a 

5 hour period of the recorded SRS data was conducted. This 

count was normalised by time to achieve a new index 

indicating the count of apneaic episodes per hour for each 

subject. This index was titled the Apnea Count Index (ACI). 

IV. RESULTS 

The SRS data, recorded during PSG, was utilised for 

training and testing of the developed method. To conduct the 

experiment, the recorded data from the 86 subjects was 

grouped into training and testing sets. This division can be 

seen in Table I. The evaluation of the developed method and 

the ACI was then carried out using four independent 

experiments. Each experiment utilised a different RDI value 

as the ground truth for the diagnosis. Hence, four RDI values 

were utilised to classify the training and test set subjects into 

OSA and non-OSA patients. The RDI values employed were 

equal to 5, 10, 15, and 30. However, as RDI of 10 is most 

commonly employed in OSA diagnosis, the results of this 

experiment were quoted throughout the paper. 

Each of the four experiments was carried out for 10 

independent L-length segmentations of the SRS signals. The 

L values were chosen to be: 1, 3, 5, 7, 9, 10, 15, 20, 25, and 

30 seconds in length. This was done to mark apneaic 

episodes. Typically a segment length of 30 seconds is 

utilised in PSG studies to obtain the estimated apneaic snore 

episodes and thus obtain RDI. In this study, the 10 distinct L 

values were utilised to study the affects of varying the 

episode lengths.  

To conduct each of the L-length experiments, initially, ψ 

values for frames of length (N=100ms) of the SRS signals 

were obtained. After that, the training set was utilised to 

obtain an optimum β value for the thresholding process. To 

do this, the training sets were thresholded using a range of β 

values. For each β value associated ROC curves were plotted 

through variation of the obtained ACI values. The area under 

the ROC curves was utilised as the detectability measure and 

the ROC curve with the largest detectability measure was 

marked. The β value was then recorded and utilised to test 

the testing set. Hence, the test set was also tested at various L 

values. However, a set β value was utilised. The ACI value 

utilised for diagnosis of the subjects was also chosen from 

the training experiments and utilised to diagnose the test 

subjects. ROC curves were then plotted, through variation of 

the ACI values, to obtain detectability measures for the 

testing experiments. Table ΙΙ displays the optimum variable 

values and the final detectability accuracy achieved using 

these variables for each of the four experiments. It can be 

seen that the detectability of the method is reduced below 

90% as the diagnostic RDI value is raised to 30. 

Fig. 1 (a) and (b) display the ACI versus RDI graphs for 

the test subjects and two of the four experiments. Each of the 

graphs represent the diagnosis of the subjects based on an 

optimum L, β, and ACI values obtained during the training 

experiments. Each experiment utilised a set RDI for the 

reference diagnosis. The diagnostic RDI and ACI values are 

both marked on each graph using dashed lines. In addition, 

the False Positive (FP) and False Negative (FN) regions are 

accordingly marked. It can be seen that as the reference RDI 

increases for the diagnosis. The ACI diagnosis produces 

larger FP errors. 

The FP errors increase as the reference RDI increases. It 

can be said that, using a larger RDI value, such as 30, could 

cause under-diagnosis of the test subjects. Hence, the ACI 

could be more accurate than the RDI reference value utilised 

for the diagnosis. It can be said that the errors produced may 

be due to the high accuracy of the system. Table ΙΙ provides 

a summary of the results obtained for the four experiments. 

V. CONCLUSION 

This paper proposed a novel algorithm for conducting 

non-contact OSA diagnosis. A new feature, called the Non-

Gaussianity Index (NGI), was developed to perform a 

measure of non-Gaussianity. This feature was employed to 

mark possible apneaic episodes in analysed snore sound 

recordings of 86 subjects. A count of the apneaic episodes 

was then conducted to obtain the Apnea Count Index (ACI) 

used for the diagnosis. It was shown that the ACI could be 

optimised and adjusted to various diagnostic RDI values. 

Finally, it was seen that the ACI value corresponding to the 

diagnostic RDI value of 10 provided a detectability of 

97.34% in conducting diagnosis of the 86 subjects. 

TABLE I 

TRAINING AND TESTING SET DIVISIONS OF SRS DATABASE 

Set Type Subjects  RDI Range RDI < 10 RDI ≥ 10 

Training 20 0.5 – 92.9 5 15 

Testing 66 0.6 – 106.7 17 49 

Total 86 0.5 – 106.7 22 64 

 

 

TABLE II 

RESULTS ACHIEVED AND VARIABLES USED PER EXPERIMENT 

RDI L Β Value Detectability ACI 

5 25 0.54 92.00 7.61 

10 25 0.36 97.34 15.44 

15 30 0.21 96.67 32.98 

30 30 0.15 86.30 58.00 
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Fig. 1 (a) ACI versus RDI graph with horizontal dashed line marking (RDI=10) and vertical dashed line marking (ACI=15.44). (b) ACI 

versus RDI graph with horizontal dashed line marking (RDI=30) and vertical dashed line marking (ACI=58.00). The horizontal dashed lines 

mark the border region for the ground truth diagnosis using RDI. The vertical dashed lines mark the border region for the conducted 

diagnosis based on the proposed method using ACI. FP and FN represent the False Positive and the False Negative error regions respectively. 
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