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Abstract—Detection of obstructive sleep apnea can
be performed through heart rate variability analysis,
since fluctuations of oxygen saturation in blood cause
variations in the heart rate. Such variations in heart
rate can be assessed by means of time-frequency anal-
ysis implemented with time-frequency distributions
belonging to Cohen’s class. In this work, dynamic
features are extracted from time frequency distribu-
tions in order to detect obstructive sleep apnea from
ECG signals recorded during sleep. Furthermore, it
is applied a methodology to measure the relevance
of each dynamic feature, before the implementation
of k-nn classifier used to recognize the normal and
pathologic signals. As a result, the proposed method
can be applied as a simple diagnostic tool for OSA
with a high accuracy (up to 92.67%) in one-minute
intervals.

I. INTRODUCTION

Sleep apnea is a disorder in which the patient stops
breathing while he is in deep sleeping. There are three
different types of sleep apnea: obstructive, central and
mixed. The former apnea is produced by an obstruction
in the pharynx caused by loss of pharyngeal dilator
muscle tone and causes recurrent pharyngeal collapse and
temporary cessation of breathing [1]. On the other hand,
in central apnea the upper airway is open, but respiratory
effort is absent or reduced. In mixed apnea, both central
and obstructive aspects are present. A typical mixed ap-
nea may show a period of central apnoea for several sec-
onds, during which the upper airway occludes, followed
by increased respiratory effort against the obstruction. In
this work, the obstructive sleep apnea (OSA) is studied.

In order to perform a diagnosis of OSA, it is necessary
to detect the presence of repetitive episodes of apnea and
hypopnea during sleep. This presence is most reliably
shown by attended overnight polysomnography in a sleep
laboratory. If the patient shows five or more apneas or
hypopneas per hour of sleep, is diagnosed with OSA.
The severity of disease can be measured by the apnea-
hypopnea index (AHI), which indicates the total time of
apneas per hour of sleep [1].

The standard polysomnography test consists of record-
ing various physiological parameters including EEG,
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ECG, EMG of chins and legs, nasal airflow, electro-
oculogram (EOG), abdominal and thoracic movements
and blood oxygen saturation (SaO2). However, the high
cost of the system, discomfort of the electrodes connect-
ing to the body and the high amount of information
required to be analyzed are the main disadvantages of
this method. The most promising mean for home diag-
nosis of OSA is the heart rate variability (HRV) analysis
[2]. Then, the HRV signal can be estimated through one
lead ECG recording followed by QRS detection, and its
use to detect obstructive sleep apnea is supported by
early researches which concluded that the events of apnea
and hypopnoea are accompanied by concomitant cyclic
variations in heart rate [3].

The aim of this work is to apply time-frequency
analysis to HRV time series extracted from ECG signal
(using a QRS detection algorithm [4]), in order to detect
OSA in intervals of 1-minute length. The time-frequency
representations applied belong to the Cohen’s class of
quadratic distributions, used previously in HRV analysis
[5] to detect OSA. Then, dynamic features are extracted
from the representations by means of linear filter cepstral
coefficients and spectral subband centroids. Finally, it
is applied a method to measure the relevance of each
dynamic feature and the results are validated through
cross-validation using a k-nn classifier.

II. MATERIALS AND METHODS

A. Time-varying spectral analysis

Time-frequency (t-f) representation (TFR) is the pro-
cess of estimating the time varying spectral content of
non-stationary signals, which are not completely de-
scribed by a stationary spectral analysis. The result of
the TFR is a two-dimensional matrix, X(t, f), represent-
ing the joint energy distribution in time and frequency.

The t-f density of x(t) can be represented by means
of the spectrogram computed from Short Time Fourier
Transform (STFT):
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In the STFT-based surface the window length remains
constant. Therefore, the extraction of information with
fast changes in time (i.e. high frequency components),
should be accomplished with short and well-timed lo-
calized intervals. In contrast, the low frequency com-
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ponents should involve large time intervals of analysis.
As a result, as a nonstationary signal of relatively small
time-bandwidth product, the TFR spectrogram-based on
STFT is not suitable for revealing the t-f dynamics.
This issue is certainly partially solved by using different
windowing functions [6].

In practice, the quadratic energy distributions, which
distribute the energy of a signal over t-f planes without
windowing, are broadly used because of their flexibil-
ity, since the time and frequency resolutions can be
adapted independently to suit the particular signal and
cross terms [7]. One of the most commonly studied
high resolution TFR is the generalized bilinear class, or
distributions of Cohen’s class, XC(t, f) which for a time
t and frequency f variables are stated as follows:

XC(t, f) =

∫ ∫

hC(t − u, τ)x(u + τ/2)x∗(u − τ/2)

e−j2πfτdudτ, XC(t, f), hC(t, τ) ∈ L2(R)
(2)

where the 2-D function hC(t, τ) is a time-lag kernel, that
defines the particular TFR and can be stated as follows:

hC (t, τ ) = h (t) g (τ) ; h(t), g (τ) ∈ L2 (R) (3)

being h(t) a function of time, and g(τ) the window
function in lag.

The variety of TFRs and their properties are deter-
mined by the choice of the kernel function, which is
basically a two dimensional smoothing filter that reduces
the interference terms inherent for the Cohen’s class
of time-frequency distributions, caused by its quadratic
nature and the presence of multi-component signals.
For instance, by setting the time-lag kernel equal to 1,
the distribution will be recognized as the Wigner-Ville
distribution (WVD), which provides a high resolution in
both t-f planes, but only for mono-component signals.
In multi-component cases, and due to the cross-term
artifacts caused by aliasing, the TFRs present worse
performance. To overcome this problem, any widely ac-
cepted window function such as the Gaussian, Hamming
or Hanning type can be applied to the WVD to smooth
the cross-terms. So, for the smooth windowed WVD
or smoothed pseudo WVD (SPWVD), the functions
h(t) and g(τ) of the kernel (3) are chosen to be time-
lag smoothed, eliminating the interferences by setting
a parameter. Thus, improving the WVD by modifying
the kernel function can suppress the cross-terms while
maintaining a good t-f resolution.

B. Linear frequency cepstral coefficients

This method uses a filter bank whose triangular filters
are linearly spaced in the frequency domain. The out-
puts of the M band-pass filters can be calculated by a
weighted summation of each filter response set {Hm[k] :
m = 1, . . . , M} and the energy spectrum |X [n, k]|2 [8]:

cm [n] =

K
∑

k=1

|X [n, k]|
2
Hm [k] , 1 ≤ m ≤ M (4)

where m, n and k are indexes for filter ordinal, time and
frequency axes, respectively; K is the number of samples
in the frequency domain.

Next, a Discrete Cosine Transform is taken over the
log filter bank energies, so the final linear frequency
cepstral coefficients (LFCC), Cp, for the desired number
of cepstral features P , can be written by:

Cp[n] =

M
∑

m=1

log (cm [n]) cos

[

p

(

m −
1

2

)

π

P

]

, 1 ≤ p ≤ P

(5)

C. Subband spectral centroids

Another parameterization framework that efficiently
combines frequency and magnitude information from the
short-term power spectrum of PCG signals is achieved
through the computation of TFR spectral subbands.
An effective method of combining the frequency and
magnitude information from the power spectrum can
be achieved through computation of subband spectral
centroid histograms [9]. The computation of the centroid
is achieved by:

κm[n] =

K
∑

k=1

kHm [k] |Xγ [n, k]|2

K
∑

k=1

Hm [k] |Xγ [n, k]|
2

(6)

where γ is a parameter that decides the dynamic range
of the spectrum used in the computation of the centroid.
The energy around each centroid in the fixed bandwidth
∆k is computed by means of:

Êm[n] =

κm[n]+∆k
∑

k=κm[n]−∆k

|X [n, k]|
2
, 1 ≤ m ≤ M (7)

D. Analysis of dynamic relevance

Let Y = {yij [k] ∈ R
m : j = 1, . . . , p; i = 1, . . . , n}

be the input training set, where yij [k] is the j-
th dynamic feature changing over discrete time k,
that belongs to i-th observation, p is the number
of features, and n the number of observations.
Each observation vector, noted as yi, can be
represented by a supervector of size pm × 1, i.e., yi =
[yi1[1], yi1[2], . . . , yi1[m], yi2[1], . . . , yi2[m], . . . , yip[m]]

⊤
.

After centering each of the observation supervectors by
subtracting the mean vector over the entire observation
set, the respective estimation of the covariance matrix
can be computed as Σy = YY⊤/n, where each column
of Y corresponds to yi. The eigenvectors associated
with the q largest eigenvalues of Σy are selected as
principal directions, which span an orthonormal basis
for a subspace containing most of the information given
by observations.

The eigenvalues λi and eigenvectors λi can be used to
form the weighting feature vector, defined as follows:

w =

q
∑

i=1

|λiλi| (8)
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so, that its larger values, no matter what sign they carry
out, typify the most significant dynamic features. Then,
the following weighting supervector is obtained:

wpm×1 = [w11, w12, . . . , w1m, w21, . . . , w2m, . . . , (9)

wp1, . . . , wpm]
⊤

, wij ≥ 0 (10)

Rearranging w, in such a way that a weighting value is
allocated for each of the dynamic features:

W =











w11 w21 · · · wp1

w12 w22 · · · wp2

...
...

...
w1m w2m · · · wpm











(11)

the j-th scalar value wj =
∑m

k=1 wjk, j = 1, . . . , p can
then be achieved, which is the sum of the elements for
every j column of weighting matrix. In consequence, the
main assumption is that the largest values of wj point
out to the best input attributes, since they exhibit higher
overall correlations with principal components.

E. Database

The database used in this study is formed by 35
recordings, containing a single continuous ECG signal of
approximately 8 hours duration [10]. The ECG record-
ings were extracted from a larger database of simultane-
ously recorded polysomnogram measurements. The ECG
signal was sampled at 100Hz, with 16 bit resolution, with
one sample bit representing 5 µV .

Although the database is labeled by one-minute in-
tervals, the analysis intervals taken during this work
are 3 minutes in order to include the low-frequency
components of the signal. The automatic diagnosis is
given for the central minute, and the output of the
classifier is compared against the label.

There were extracted 8928 intervals (4464 per class,
in order to have a balanced class problem), each one
of 3 minutes. The estimation of HRV might fail due to
noise. Therefore, the best 4000 intervals were selected,
and two tests were performed: the first test uses all 8928
observations, while the second test uses only the 4000
best observations.

F. Computation of dynamic features

According to the methods explained previously, there
were computed 30 dynamic features distributed in the
following way:

1) Spectral centroids (1-10)
2) Energy of spectral centroids (11-20)
3) Cepstral coefficients (21-30)

The features were estimated using 10 filters linearly
distributed in the band between 0 and 0.5Hz.

III. RESULTS

Figure 1 shows the time-frequency representations of
normal and pathologic HRV signals. It can be seen that
the normal signal has a constant frequency component
around 0.23Hz due to the modulation caused by respira-
tion, whereas the pathologic representation does not have
that component, and its energy is concentred around the
low frequencies.
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Fig. 1. Time-frequency representations (SPWVD) of normal and
pathologic signals

The results of the analysis of dynamic relevance are
shown in the Figure 2, where each dynamic contour has
a relative weight associated, the larger the weight, the
larger its relevance.

According to the relevance shown in Figure 2, there
were selected the 10 most relevant contours, and a cross-
validation process was performed, using 70% of the
observations to train the classifier, and the remaining
30% for validation purposes. There was used a k- nearest
neighbor classifier with k = 3, and principal component
analysis (PCA) in order to reduce the feature space. The
parameter k of the classifier was obtained performing a
sweep between 1 and 11 neighbors, then, the value which
gave the best performance was selected. The results of
the classification stage are shown in Table I.

The results in Table I show that the quadratic time-
frequency distribution SPWVD is more adequate to
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Fig. 2. Relevance of dynamic contours

TABLE I

Performance of classifier – Accuracy

database - 8928 database - 4000
Mean Std Mean Std

SPEC 86.44% 5.91% 92.66% 2.21%
SPWVD 89.02% 4.27% 92.67% 2.49%

represent HRV signals with the aim of detecting OSA,
evidencing an improvement of 2.5 percentage points over
the spectrogram, using 8928 observations to perform the
cross-validation. On the other hand, when the test is
performed with the best 4000 observations, the accuracy
obtained with both representations is similar.

IV. DISCUSSION AND CONCLUSIONS

In [11] is reported an accuracy of 92.6% using ECG
morphology and visual classification; while in [12] it is
obtained an accuracy of 92.3% using both visual and
automatic classification with wavelet transform and ECG
morphology; in addition, in [13] is reported an accuracy
of 89.4% with an automatic classifier, using frequency
analysis and amplitude of R wave. The method developed
in this work presents comparable results with respect to
the aforementioned methods, with a complete automatic
diagnosis system and using features derived from TFR.

The enhancement of the TFR resolution by means
of quadratic energy distributions, such as generalized
bilinear class, definitely leads to an improvement of the
representation capabilities that determine the details of
the HRV signal, and hence to a better detection of
OSA (as basic signs of the pathological changes to be
identified).

An important issue is the selection of the dynamic
features. As commonly known in the state of the art,
it was proved that a parameterization framework that
efficiently combines magnitude and frequency informa-
tion from the power spectrum is more suitable for this
purpose. In any case, the choice of the number of time-
varying contours (related to any of the multivariate dy-
namic features) for proper representation of HRV signals

must be considered. A large number of contours does not
always lead to a better classification performance.
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