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Abstract— Flexible endoscopes are used in many diagnos-
tic and interventional procedures. Physiological motions may
render the physicians task very difficult to perform. Assis-
tance could be achieved by using motorized endoscopes and
real-time visual tracking algorithm to automatically follow a
selected target. In order to control the motors, one needs
to have an accurate estimation of the motion of the target
in the endoscopic view, which requires an efficient tracking
algorithm. In this paper, we compare tracking algorithms on
various in vivo targets in order to assess their behavior under
different conditions. The study shows that among the difficulties
which arise when tracking an in vivo target, the change of
illumination is paramount. Nevertheless, some algorithms, with
minor modifications and without a priori knowledge about the
target, achieve very good results.

I. INTRODUCTION

Medical procedures are nowadays less traumatic for the

patient but often become more complex for the physicians.

For instance, an increasing number of minimally invasive

procedures use flexible endoscopes. The use of this type of

device is not straightforward. For example, in angiomas burn-

ing procedures, gastro-enterologists encounter difficulties to

follow the movement of the angiomas due to the patient’s

breathing and the stomach contractions. It may result in

burning healthy tissues around the targeted angiomas. In

newly developped surgical procedures, like Natural Orifice

Transluminal Endoscopic Surgery (NOTES) [1], it is very

difficult for the surgeon to operate the tip of the flexible

endoscope using the handles and the flexible instrument in

the working channel of the endoscope, in order to perform

the surgical act and simultaneously track the physiological

movements.

Motorized flexible endoscopes and gastroscopes can be

a solution for improving existing and future procedures. In

[2], the two wheels of the handle of an endoscope have been

replaced by computer controlled motors. This system can be

used to automatically track the target despite physiological

motions and, thus, release the physician from this worry in

order to focus on the procedure itself. The idea is that the

computer identifies the displacement of a target chosen per

operatively by the physician inside the image and controls

the motors so that the tip of the endoscope follows this

target. This way, the target would stay in the center of the

endoscopic view.

In order to achieve this goal one has to be able to track

in real-time the target in the image sequences. An additional

constraint, because of the multiplicity of possible targets and

the lack of a priori model, is the need to be able to define

the target ”in operam”, without any marker.

There are many kinds of visual tracking algorithms in

the literature [3]. One can separate them in two main

categories depending on the type of features used to perform

the tracking. The algorithms of the first kind use specific

information of the target, like noticeable points or features

in [4] and [5] or edges in [6]. They are referred as feature-

based algorithms. The other kind of algorithms use all the

pixels of the target and are referred as area-based algorithms.

Such algorithms can be correlation based algorithms or

histogram based algorithms. Area-based algorithms are more

appropriate to our problem since they are not task specific

and can be used by selecting any area of an image without

a priori knowledge of the target. As stated above, with a

great diversity of possible targets in surgical operations,

it is, indeed, not relevant to have an algorithm trying to

identify all the possible features of the targets. Besides, these

features could also be modified during in vivo experiments.

An interesting feature of this type of algorithms is the fact

that they are generic and can be used for many different

operations.

The aim of this paper is to compare real-time algorithms

with different models and optimization techniques in order

to study their behavior on in vivo sequences.

The first one is the Mean Shift algorithm which uses

statistical analysis of the image as shown in [7]. All the

others minimize a sum of squared differences (SSD) between

two images, like Lucas-Kanade based algorithms [8] or the

Efficient Minimization Method exposed in [9], which uses a

new optimization method.

In the next section we will describe the in vivo sequences

we have acquired to test the algorithms. These studied

tracking algorithms are presented in section III. Section IV is

dedicated to a comparison of the results on in vivo sequences.

Finally, a discussion on these results will be done in the last

section.

II. DESCRIPTION OF THE IN VIVO SEQUENCES

The four sequences of in vivo images, presented in Fig. 1,

have been acquired in stomach and abdominal cavities of

living pigs using a classical Karl Storz flexible endoscope.

From these sequences five targets of possible interest for

physicians have been identified. Two sequences have a
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periodical motion, we decided that three motion cycles

were representative of the whole motion which makes the

sequences 300 images long (12 seconds). For the two others

we chose sequences of the same length with various motions.

Fig. 1. The four in vivo sequences and the five targets used to test the
algorithms. (a) target 1, (b) target 2, (c) target 3, (d) target 4, (e) target 5.

A. Target description

Let’s describe the main transformations that occur to the

five targets. In order to visualise more easily what happens

in terms of pixels values, we have computed, for each target,

the mean of the pixels values of the tracked Region of

Interest (ROI), in every image. These values are shown on

Fig. 2. Moreover, as the dominant tint on all sequences is

red, we used greylevel images. Indeed in these conditions

the additional information given by three channels images is

not so relevant.
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Fig. 2. Mean of the ROI pixels values undergone by the five targets used to
test the algorithms. target 1: solid line. target 2: dashed line with +. target
3: broken line. target 4: solid line with •. target 5: dotted line with ×.

The first target is a natural red blood spot on the pink

pig stomach wall which becomes darker at the end of the

sequence. The second target is a burnt on a pig liver which

has a periodic beating motion. During its cyclic motion the

target suffers a strong lighting as shows Fig. 2. The third

target is a burnt in a pig stomach and has the most complex

motion: first it moves to a darker area and comes back, then it

undergoes a zoom out and a quick motion leading it again to

the darker area. The fourth target is a pale natural mark on a

pig liver and the fifth one is the base of a reddish vein fork on

a mainly white pig gall bladder. Both have periodic motions

but the last one suffers an important change of illumination.

B. Ground truth definition

To compare the algorithms accuracy we needed a ground

truth on our in vivo sequences. For this purpose, on each

of the targets in the 300 images long sequence, we have

identified a specific point. Then we have manually selected

the position of this point and recorded its coordinates in all

the following images of the sequence. Hence we obtain a

ground truth of the position of a specific point of the target

that can be used for comparing the algorithms.

We choose for the template sizes (width × height),
respectively from target 1 to target 5, 25 × 25, 60 × 30,

80×50, 30×20 and 15×15. These sizes enable to have the

whole target inside the template. The size can be modified

but if it gets too small the algorithm lacks information and

if it gets too large the computation time increases. Overall

the algorithm accuracy will fluctuate but it will not change

dramatically.

III. WORKING OF THE TRACKING ALGORITHMS

In this section we shortly describe the algorithms. The first

step, is the same for all these algorithms: the operator selects

a rectangular area around the target to track in the image.

This area is the reference template. Then the algorithms try to

estimate the motion of this template in the subsequent images

of the sequence. To assess their best possible behavior we let

the algorithms converge on each image, whenever possible.

Which means that, even if all the algorithms studied are

known to work under real-time constraint, no computation

time had to be respected during our experiments.

A. Mean Shift based tracking algorithm

The Mean Shift algorithm [7] is a pattern recognition

method based on a probability density function (p.d.f.).

The purpose is to find the mode of this function which

corresponds to the highest probability of the new location

of the target. The p.d.f. used is a greylevel histogram.

This algorithm is image based, which means it does not

use the structural information of the image. Indeed only the

pixels values are needed to compute the histograms which

will be compared to the reference one. This algorithm is also

known for being able to deal with deformations in the image.

From the selected template a reference histogram is com-

puted. This histogram is the profile of our template. For each

new image, a histogram is computed for an area centered

at the position yj (a 2D vector) the target had in the

previous image. This area is a little wider than the reference

template since, even if we consider the assumption of small

displacement between two images, the target is supposed to

have moved in an unknown direction.

The reference histogram to match is q = {qu}u=1...m and

the current one is p (yj) = {pu (yj)}u=1...m
, with m the

number of bins in these histograms. We have chosen m = 32
which allows a suitable repartition of pixels values from in

vivo sequences.
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Thanks to these histograms we compute a weight for each

pixel xi

wi =

m
∑

u=1

δ [b (xi)− u] vu

√

qu

pu (yj)
(1)

where the function b : R
2 7→ [1 . . .m] associates the

bin b (xi) to the pixel xi. vu is a weighting value calcu-

lated from a background histogram, as in [10], to lower

the effect of template pixels that are also present in the

background: on the first image we create an histogram

h = {hu}u=1...m of pixels surrounding the template, then

we calculate {vu = min (h∗/hu, 1)}u=1...m where h∗ is the

smallest value of h = {hu}u=1...m. This suits particularly

well our problem since the target we want to track is part of

an organ and hence the background surrounding the target

moves with it.

The mean shift equation is then written as

yj+1 =

∑n

i=1
xiwi

∑n

i=1
wi

(2)

where yj+1 is the new location of the center of the template.

The new coordinates of the center is hence computed

with the coordinates of all the pixels in the current template

weighted with wi from (1). These weights are such that the

more influential coordinates come from the pixels whose

brightness values are similar to the reference template ones

(see [7] for details of the theory). The specificities of this

algorithm compared to the other algorithms which will be

detailled below is that it is not based on a transformation

model between the ROI and the template, this also means

that it cannot adapt its size if the target size is modified. In

addition as the Mean Shift algorithm uses statistical analysis

of the image pixels values it is known to be robust to

distortion of the template.

B. Algorithms using a SSD

The algorithms based on a SSD use a minimization method

to estimate the motion or transformation of a reference

template T (x) to a region of interest (ROI) being a part

of the current image I(x), where x = (x, y)t is the

coordinates vector of a pixel in the template. Let W (x;p) be

a parameterized warp, where p = (p1, . . . , pn)t is a vector

of parameters. When applied to I(x), W transforms it into

I ′(x). To find p, which maps I(x) to T (x), one has to

minimize a non linear function over p, which is the sum

of squared errors between the current transformed template

and the reference template:

∑

x

[I (W (x;p))− T (x)]
2
. (3)

1) Choice of the transformation model: Before solving

(3) one needs to choose a transformation model which

will define the warping function W . As the movements

on our in vivo sequences may also undergo rotations and

scale variations we have tested two models allowing such

transformations. One is an affine warp written as in [11] :

W (x;p) =

(

(1 + p1) p3 p5

p2 (1 + p4) p6

)





x
y
1



 (4)

where p = (p1, p2, p3, p4, p5, p6)
t are the parameters to

estimate. They allow to take into account a 2D translation, a

2D rotation, two scale factors and shear. The last model is a

homography which allows to follow 3D motions of a planar

patch:

W (x;p) =





(1 + p1) p4 p7

p2 (1 + p5) p8

p3 p6 1









x
y
1



 (5)

With the assumption for the template to be a planar patch

the homography describes the 3D translation, the 3D rotation

and the plane position with respect to the camera up to a scale

factor.

2) Expression of the cost function: The Lucas-Kanade al-

gorithm [12] solves (3) by iteratively estimating an increment

∆p from a previously known estimate of p and then updating

the parameters by p← p+ ∆p It is also called the forward

additive algorithm [8]. Equation (3) has first to be linearized

by a Taylor expansion leading to the local solution:

∆p = H−1
∑

x

[

∇I
∂W

∂p

]t

[T (x)− I (W (x;p))] (6)

where H is an approximation of Hessian matrix and

(∂W/∂p) is the Jacobian of the warp.

From then other cost functions have been developed. The

forward compositional algorithm exposed in [13], aims at

minimizing:
∑

x

[I (W (W (x; ∆p) : p))− T (x)]
2

(7)

and updating the parameters with W (x;p)←W (x;p) ◦
W (x; ∆p).

In [8] the authors implement another method, the inverse

compositional which minimizes:
∑

x

[T (W (x; ∆p))− I (W (x;p)))]
2

(8)

with W (x;p) ← W (x;p) ◦W (x; ∆p)
−1

as update for

the parameters p. This method is more efficient than the two

above since most of the computations are done only once on

T (x), the reference template, at the start of the algorithm.

3) Choice of the optimization method: At this point comes

the question of the optimization method to use in order

to solve (3). In [8], Baker and Matthews have shown that,

among the well-known optimization techniques, the steepest

descent and various diagonal approximations to the Hessian

do not converge efficiently and are very sensitive to the

parameterization for a same set of warps. The Newton

algorithm is better but still worse than the Gauss-Newton or

Levenberg-Marquardt algorithms. Since the results between

the two latters are similar we have chosen to implement the
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Gauss-Newton (G-N) optimization, which is more straight-

forward. This gives us the following approximation for the

Hessian in (6), H =
∑

x [∇I(∂W/∂p)]
t
[∇I(∂W/∂p)] .

In addition to the Gauss-Newton method we have tested

another optimization method exposed in [9]. As classical

second-order minimization perform worse than G-N method,

E. Malis developed a different optimisation method called

the efficient second-order minimization method (ESM). This

method allows to approximate second-order terms by only

calculating first-order terms. This makes the algorithm con-

verge quickly and with little computation. Then (6) can be

rewritten as :

∆p ≈ −2 (J(0) + J(pc))
+

[T (x)− I (W (x;pc))] (9)

with J(z) = ∂I (W (x;p)) /∂p for p = z and where pc

is the solution to equation (7).

4) Choice of parameterization: Besides classical param-

eterizations shown in III-B.1, there is a need for a specific

one, indeed (9) generally requires to know pc. However, by

parameterizing the homography matrix on a Lie algebra it

is possible to compute (9) without explicitly knowing pc.

Practically, J(pc) is computed as the current image gradient

∇I(x) times the derivative of the warp with respect to the

parameters ∂W (x;p)/∂p computed for p = 0. For further

detailed explanations see [14]. Though this parameterization

using Lie algebra could be applied to all transformation mod-

els of III-B.1, we only implemented it for the homography.

The Lie algebra parameterization allows to express the

computation of the parameter increment using the mean

of the gradients of the current image and the template,
1

2
(∇I + ∇T )(∂W/∂p) . Although this is not theoretically

exact we also tried to use the same computation of the mean

of gradients for a classical affine parameterization.

5) SSD-based tested algorithms and notations: Many

different combinations are possible between the various

models, costs functions, optimization methods and param-

eterizations. We will now sum up which combinations have

been chosen. There are the affine model with G-N and

forward compositional (AFF+FC), the same with inverse

compositional (AFF+IC), as well as the one with mean of

gradients applied on forward compositional (AFF+MGF).

The homography model with G-N and forward compositional

(HMG+FC), also with inverse compositional (HMG+IC) or

with parameterization on a Lie algebra (HMG+FCLie) and

the optimization method developed by Malis with homogra-

phy model (ESM).

IV. EXPERIMENTAL RESULTS

There are mainly three possible outcomes when testing an

algorithm on a target: either it manages to track,with more

or less accuracy, or it drifts, meaning it tracks the target

for a while then looses it but keeps moving in the images

with a smooth motion, or it fails: this happens when the ROI

detected by the algorithm exits the image or when the ROI

folds on itself and then does not move any more.

Each algorithm, has been initialized to the ground truth

position on the first image of the sequence. The tracking

accuracy is estimated by comparing the mean and standard

deviation of the distance between the position estimated by

the algorithm and the reference position from the ground

truth. In the following tables the symbol ∅ indicates that the

algorithm failed to track the target.

A. Comparing classical homography model algorithms

Tab. I shows the results for HMG+IC, HMG+FC and

HMG+FCLie, Tab. II the results of ESM.

HMG+FC and HMG+FCLie have very close behavior.

This is also true for HMG+IC and HMG+ICLie (not shown

here). Both fail on the same targets. For the following of this

section we will only consider the traditionally paremeterized

version of the HMG algorithms.

HMG+IC and HMG+FC do not behave the same way.

HMG+IC fails on much more targets than HGM+FC. The

reason seems to be the changes in the ROI illumination,

as seen on Fig. 2. When the target does not suffer an

illumination change HMG+FC and HMG+IC track similarly.

Tab. I also shows that, when a change of illumination occurs,

even if HMG+IC does not fail, it does not track accurately.

The difference between HMG+FC and HMG+IC is that the

Jacobian matrix is computed at every iteration for HMG+FC

whereas it is only computed on the reference template for

HMG+IC. We will hence only consider HMG+FC in the

following as it can be applied with better results on more

targets.

When comparing the HMG+FC with the ESM we note

that even with a different parameterization and a different

optimization method, the results are very similar for targets

1, 3 (where they both fail), 4 and 5. On target 2 the ESM

has a smaller error than the HMG+FC (or HMG+FCLie)

which may indicate that the optimization of ESM works more

efficiently when there is important lighting variations.

B. Comparing classical affine model algorithms

With affine model we observe, on Tab. II, similar differ-

ences between forward and inverse compositional algorithms.

The AFF+IC fails to track some targets when there is an

illumination change (usually a darkening). When there is an

important increase of lighting (see target 2) AFF+IC does

not fail but the tracking is badly impaired while AFF+FC is

very close from the ground truth. So for the affine model,

just as for the homography model, the forward compositional

is more robust on in vivo sequences.

Concerning the new algorithm AFF+MGF, which is only

slightly different from AFF+FC, we observe that on targets

where AFF+FC tracks correctly it achieves similar results,

see Tab. II. However AFF+MGF obtains much better results

on target 3 where AFF+FC, the best algorithms on the

sequence, drifts after the zoom out, see Fig. 3. Indeed using a

mean of gradient seems to enable the optimization algorithm

to step out of a local minimum allowing AFF+MGF to track

the target until the sequence end. So AFF+MGF always

manages to track the target it is assigned to, whatever the

conditions and without estimation of the illumination.
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`
`

`
`

`
`

`
`

`
Target

Algorithm Mean Shift HMG+IC HMG+FC HMG+FCLie

Target 1 2.67 ± 0.85 ∅ 1.71 ± 0.71 1.71 ± 0.70

Target 2 3.22 ± 2.74 8.15 ± 9.91 2.57 ± 3.86 2.56 ± 3.85

Target 3 141.86 ± 49.92 ∅ ∅ ∅

Target 4 4.63 ± 1.44 3.20 ± 0.67 3.18 ± 0.67 3.18 ± 0.67

Target 5 10.56 ± 4.46 ∅ 2.27 ± 1.01 2.26 ± 1.01

TABLE I

MEAN AND STANDARD DEVIATION OF DISTANCE TO THE GROUND TRUTH FOR MEAN SHIFT, HMG+IC, HMG+FC AND HMG+FCLIE.

`
`

`
`

`
`

`
`

`
Target

Algorithm AFF+MGF AFF+IC AFF+FC ESM

Target 1 1.78 ± 0.67 1.79 ± 0.65 1.76 ± 0.67 1.70 ± 0.72

Target 2 2.10 ± 1.80 12.34 ± 16.99 1.69 ± 1.28 2.18 ± 2.31

Target 3 1.70 ± 1.46 ∅ 54.34 ± 58.67 ∅

Target 4 3.10 ± 0.68 3.10 ± 0.68 3.09 ± 0.68 3.18 ± 0.66

Target 5 2.69 ± 1.23 ∅ 2.18 ± 1.07 2.81 ± 1.49

TABLE II

MEAN AND STANDARD DEVIATION OF DISTANCE TO THE GROUND TRUTH FORAFF+MGF, AFF+IC, AFF+FC AND ESM.

C. Comparing homography and affine models algorithms

Tab. I and Tab. II show that HMG+IC is more accurate

than AFF+IC on target 2, where increase of lighting occurs.

Nevertheless the affine model seems to be more robust since

it does not fail on target 1 when HMG+IC does.

Regarding HMG+FC and AFF+FC results tend to indicate

that HMG+FC is more accurate when tracking. Here too the

affine model with AFF+FC seems to be more robust since,

on target 3, it does not fail in the darker area while HMG+FC

does, even if it drifts after the zoom out, explaining the large

values in Tab. II.

About the two algorithms using a mean of gradients, ESM

and AFF+MGF, they both track accuratly most targets. Once

more the target 3 gives us more information about their

respective behavior showing that the affine model tracks

accuratly when the homography fails.

D. Behavior of the Mean Shift algorithm

The last algorithm is the Mean Shift algorithm. It follows

quite accurately the ground truth in the sequences, though

not as precisely as the previous algorithms. When the target
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Fig. 3. Ground truth (solid black line) and results of tracking on target 3
for HMG+FC (dash and dot line), ESM (dashed line), AFF+FC (solid light
line) and AFF+MGF (solid line with ×).

almost does not evolve during the sequence, like target 1,

the results of the Mean Shift are as good as the ones of the

other algorithms.

Furthermore, for different reasons, the Mean Shift algo-

rithm has the same difficulties to track when illumination

changes, see target 3 on Tab. I. Since only the values of pixels

are used in this algorithm, it is quite sensitive to illumination

changes. That is why it cannot follow the target 3 when it

goes in the darker area. In addition, since the Mean Shift

only uses the pixels values it is more sensitive to surrounding

ones, all the more than our in vivo endoscopic images

have low contrast. Hence the template size may influence

the algorithm behavior. Indeed, even with the background

rejection, when an area close to the target has a similar

histogram (e.g. around target 4), the algorithm may drift if

the template is too wide. The drift effect is even more readily

understandable with target 5 where the Mean Shift algorithm

moves the ROI along the vein. This indicates clearly that the

Mean Shift algorithm can only be used for isolated targets,

which is not so common in in vivo environment.

V. DISCUSSION

The mean shift algorithm achieve good results in tracking

as long as there is no illumination change in the template

and as long as the target does not change too much from its

initial appearance. Otherwise, it becomes much less accurate

or even drift far away from the target.

Among the SSD based algorithm which can estimate the

target deformations, we found a few noticeable characteris-

tics. Firstly, contrary to [8], we found out that the forward

and inverse compositional algorithms are not equivalent on

our in vivo sequences. This might be due to the fact that the

target in the sequences often evolves, changing the illumina-

tion and preventing the inverse compositional algorithm to

converge. Secondly, we found that the parametrization of the

homography has little if any influence on the convergence of
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the forward compositional algorithm. Besides, this algorithm

behaves in a very similar way to the ESM one which might

suggest that such a complex optimization and parametriza-

tion in not needed on in vivo images.

On most of the targets there is not much difference

between affine model and homography model. However,

the affine model manages to handle strong darkening on

target 3 when the other fails, regardless of the optimization

method. This might suggest that the homography is over

parameterized and, hence, could not manage to faithfully

estimate all the parameters when less information is available

from the gradients (e.g. because of darkening).

Finally, the affine model with mean of gradient

(AFF+MGF) manages to almost always track quite accu-

rately the target and presents the best results out of all the

algorithms that have been tested.

To conclude, the illumination seems to have the most

troublesome effect on the algorithms and one could think

of estimating its parameters to improve their convergence.

A method is explained in [15] about the ESM algorithm. In

future work it would be worthy to apply such an estimation

on the affine model with mean of gradient forward compo-

sitional algorithm to assess whether it improves its tracking

ability. Another path which could also be used is to think of

an appropriate way of updating the reference template. But

a risk is to forget about the initial appearance of the target

or to change too quickly on some temporary modifications

of the target.
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