
  

  

Abstract—There are two essential reasons for the slow 
progress in the acceptance of clinical case retrieval and 
similarity search-based decision support systems; the especial 
complexity of clinical data making it difficult to define a 
meaningful and effective distance function on them and the 
lack of transparency and explanation ability in many existing 
clinical case retrieval decision support systems. In this paper, 
we try to address these two problems by introducing a novel 
technique for visualizing inter-patient similarity based on a 
node-link representation with neighborhood graphs and by 
considering two techniques for learning discriminative distance 
function that help to combine the power of strong “black box” 
learners with the transparency of case retrieval and nearest 
neighbor classification. 

I. INTRODUCTION 
here is growing interest in the use of computer-based 
clinical decision support systems (DSSs) to reduce 

medical errors and to increase health care quality and 
efficiency [1]. Clinical DSSs vary greatly in design, 
functionality, and use. According to the reasoning method 
used in clinical DSS, one important subclass is that of Case-
Based Reasoning (CBR) systems – systems which have 
reasoning by similarity as the central element of decision 
support  [1], [2]. 

One reason for the slow acceptance of CBR systems in 
biomedical practice is the especial complexity of clinical 
data and the resulting difficulty in defining a meaningful 
distance function on them and adapting the final solution [3].  

Another commonly reported reason for the relatively slow 
progress of the field is the lack of transparency and 
explanation in clinical CBR. Often, similar patients are 
retrieved and their diagnoses are presented, without 
specifying why and to what extent the patients are chosen to 
be similar and why a certain decision is suggested. We 
believe that, one way to approach this problem is to better 
visualize the underlying inter-patient similarity, which is the 
central concept of any clinical CBR. 

Our main goal with this paper is to introduce a novel 
technique for visualizing patient similarity, based on 
neighborhood graphs, which can be helpful in clinical 
decision support. Besides, we consider two related 
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techniques for learning discriminative distance function, 
which when used in combination with the neighborhood 
graphs can make them a powerful and flexible tool for 
clinical decision support in different classification contexts. 

This paper is organized as follows. In Section II we 
review two techniques for learning discriminative distance 
functions; learning from equivalence constraints and the 
intrinsic Random Forest (dis-)similarity. In Section III a 
technique for visualizing inter-patient similarity based on 
neighborhood graphs is introduced and our implementation 
of it is discussed. We finish in Section IV with a brief 
summary and discussion of ongoing and future work. 

II. LEARNING DISCRIMINATIVE DISTANCE FUNCTION 
There are several reasons that motivate the studies in the 

area of learning distance functions and their use in practise 
[4]. First, learning a distance function helps to combine the 
power of strong learners with the transparency of nearest 
neighbor classification. Besides, learning a proper distance 
function was shown to be especially helpful for high-
dimensional data with many correlated, weakly relevant and 
irrelevant features, where most traditional techniques would 
fail. Also, it is easy to show that choosing an optimal 
distance function makes classifier learning redundant. Next, 
learning distance functions breaks the learning process into 
two sequential steps (distance learning followed by 
classification or clustering), where each step requires search 
in a less complex functional space than in the immediate 
learning. Besides, it fosters the creation of more modular and 
thus more flexible systems, supporting component reuse. 
Another important benefit is the opportunity for inductive 
transfer between similar tasks; this approach is often used in 
computer vision applications; see e.g. [5]. 

A. Learning from Equivalence Constraints 
Usually, equivalence constraints are represented using 

triplets (x1, x2, y), where x1, x2 are data points in the original 
space and y∈{+1,-1} is a label indicating whether the two 
points are similar (from the same class) or dissimilar. 
Learning from these triples is also often called learning in 
the product space (i.e. with pairs of points as input); see [6], 
[7] for examples. While learning in the product space is 
perhaps a more popular form of learning from equivalence 
constraints, yet another common alternative is to learn in the 
difference space, the space of vector differences; see [8], [9] 
for examples. The difference space is normally used with 
homogeneous high-dimensional data, such as pixel 
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intensities or their PCA coefficients in imaging. While both 
representations demonstrate promising empirical results in 
different contexts, there is no understanding which 
representation is better. No comparison was done so far; 
usually a single representation for the problem is chosen.  

There are two essential reasons that motivate the use of 
equivalence constraints in learning distance functions; their 
availability in some learning contexts and the fact that they 
are a natural input for optimal distance function learning [4]. 
It can be shown that the optimal distance function for 
classification is of the form p(yi≠yj│xi,xj). Under the i.i.d. 
assumption the optimal distance measure can be expressed 
in terms of generative models p(x│y) for each class as 
follows [5]: 

        ∑ −=≠ y jijiji xypxypxxyyp ))(1)((),(  (1) 

B. The intrinsic Random Forest distance function 
For a Random Forest (RF) learnt for a certain 

classification problem, the proportion of the trees where two 
instances appear together in the same leaves can be used as a 
measure of similarity between them [10]. For a given forest f 
the similarity between two instances x1 and x2 is calculated 
as follows. The instances are propagated down all K trees 
within f and their terminal positions z in each of the trees 
(z1=(z11,…,z1K) for x1, similarly z2 for x2) are recorded. The 
similarity between the two instances then equals to (I is the 
indicator function): 
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Similarity (2) can be used for different tasks related to the 
classification problem. Thus, Shi and Horvath [11] 
successfully use it for hierarchical clustering of tissue 
microarray data. First, unlabeled data are expanded with a 
synthetic class of evenly distributed instances, then a RF is 
learnt and the intrinsic RF similarities are determined as 
described above and clustered. The resulting clusters are 
shown to be clinically more meaningful than the Euclidean 
distance based clustering with regard to post-operative 
patient survival.  

Interesting is that using this similarity for the most 
immediate task, nearest neighbor classification, is rather 
uncommon, comparing to its use for clustering. In one of 
related works, [12], it is used for protein-protein interaction 
prediction, and the results compare favourably with all 
previously suggested methods for this task. 

The intrinsic RF distance is rather a “dark horse” with 
respect to learning from equivalence constraints. The 
number of known applications for it is still limited; perhaps, 
the most successful application is clustering genetic data, 
[11]. Works on learning equivalence constraints never 
consider it as a possible alternative. In general, we believe 
that the circle of applications both for distance learning from 
equivalence constraints (which is currently applied nearly 

solely to imaging problems) and for the intrinsic RF distance 
is still, undeservedly, too narrow and may and should be 
expanded. 

III. VISUALIZING PATIENT SIMILARITY WITH 
NEIGHBORHOOD GRAPHS 

A. Background and Implementation 
Neighborhood graphs provide an intuitive way of patient 

similarity visualization with an entity-relationship 
representation. There can be distinguished three basic types 
of neighborhood graphs that can be used to visualize object 
proximity in DSSs; (1) relative neighborhood graph (RNG), 
(2) distance threshold graph, and (3) directed nearest 
neighbor graph. These graphs are studied and applied in 
different contexts; in particular, the threshold and 
neighborhood graphs are often used for analyzing gene 
expression data in bioinformatics. 

In a relative neighborhood graph, two vertices 
corresponding to two instances A and B in a data set are 
connected with an edge, if there is no other instance C which 
is closer to both A and B with respect to a certain distance 
function d [13]: 
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Originally, relative neighborhood graphs were defined for 
two-dimensional data (planar sets) with the Euclidean 
distance metric, but later they were generalized and applied 
to multiple dimensions and other distance functions [13]-
[15]. 

Besides the relative neighborhood graphs we focus on, 
there are known some other similar known node-link (graph-
based) visualizations of instance proximity. These include 
the Minimum spanning tree (MST), the Gabriel graph, and 
the Delanay tessellation [13]. We believe that out of this 
family, the relative neighborhood graph is the best candidate 
to visualize patient proximity in a DSS. The MST has 
usually too few edges to spot groupings/patterns in the data, 
while the Gabriel graph and the Delanay tessellation are, 
vice versa, usually too overcrowded, which becomes a 
problem with already more than 10 instances. 

A threshold graph is simply defined as a graph where two 
vertices are connected with an edge if the distance between 
the two corresponding instances is less than a certain 
threshold. In a nearest neighbor graph, each instance is 
connected with one or a set of its nearest neighbors. This 
graph is usually directed as the relation of being a nearest 
neighbor is not necessarily symmetric. An important benefit 
of RNG comparing to the other two graphs is the fact that it 
is always connected with nodes having a reasonable small 
degree; it is often planar or close to planar.  

In machine learning, neighborhood graphs find various 
applications, including clustering, outlier removal, and even 
supervised discretization [15]. In other areas, other, more 
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exotic applications may also be found. In [16], for example, 
the minimum spanning tree of a neighborhood graph was 
applied to contrast-based hierarchical image segmentation. 
In [17] a directed relative neighborhood graph and directed 
minimum spanning tree are successfully applied to topology 
control, in order to create a power-efficient network 
topology in wireless multi-hop networks with limited 
mobility. 

One important limitation of RNGs which affects their 
scalability is the computational complexity of the algorithms 
that construct them. There are known solutions for speed-up 
for dimensionalities up to three, but in the general case the 
computational complexity remains O(n3), where n is the 
number of nodes (instances). One possible solution for too 
large data sets is to cluster them into a number of groupings, 
for which calculating the RNG would be feasible, and then 
to create an RNG separately for each of them, also 
connecting close clusters (the corresponding neighborhood 
graphs) with each other. 

In our toolbox for visualization, navigation and 
management of the three neighborhood graphs introduced 
above, which is being developed as a part of similarity 
search-based clinical DSS CaseReasoner, we implement the 
following functionality: 

• node colouring, to represent numeric and nominal 
attributes; 

• node filtering, according to attribute values in the 
patient record; 

• edge colouring and filtering, according to the 
underlying distance; 

• graph clustering into an arbitrary number of 
components; 

• reconfigurable tooltips displaying clinical data from the 
patient record and images; 

• nearest neighbor classification and regression 
performance visualization for each node, for a selected 
attribute and a certain similarity context; 

• image visualization within the nodes of the graph (e.g. 
meshes corresponding to the pulmonary trunk of the 
patient can be displayed). 

For clustering the neighborhood graphs, we use the 
following two algorithms; (1) the Girvan and Newman’s 
algorithm for graph clustering which is often used for 
clustering of complex social and biological networks [18], 
(2) top-down induction of a semantic clustering tree (in the 
original feature space), the goal of which is to provide every 
cluster with a semantic description that can be inspected by a 
clinician and may carry important information.  

Perhaps the main competitor to neighborhood graphs as a 
tool for visualizing patient similarity is heatmaps, which are 
well known and often used by clinical researchers, in 
particular by geneticists. In comparison to heatmaps, as 
follows also from the feedback obtained from partner 
clinicians in the project, neighborhood graphs possess a 
number of advantages. In particular, they are easier to read 
with the more intuitive node-link representation, they allow 

visualizing additional features or even image thumbnails at 
nodes, and they have a flexible layout allowing to naturally 
visualize clusters, enlarge nodes, and filter our a set of nodes 
and edges. 

B. Examples 
In Fig. 1 an example RNG for a set of 63 meshes 

representing aortic valves is shown. Two classes of valves 
are distinguished; healthy (blue) and diseased (red). The 
current patient is highlighted in orange and her immediate 
neighbors in yellow. The underlying distance is learnt using 
RF in the product space of equivalence constraints, that was 
proven to be the best technique for this task. Girvan-
Newman clustering of the graph into two clusters is 
presented. One may see that the clustering nearly perfectly 
corresponds to the two classes. Such a graph is an expressive 
way of presenting relevant information. From the graph, one 
may easily comprehend patient distribution according to the 
studied similarity context and see patient groupings, identify 
outliers, easy to classify cases and the borderline cases 
classification for which is likely to be uncertain. More 
information about this data set, the problem domain and the 
model for mesh generation can be found in [19]. Leave-one-
out accuracy for this problem, using distance learning with 
RF in the product space, is as high as 93%. 

 

 
Fig. 1. A relative neighborhood graph for a set of 63 aortic valves. 

 
In Fig. 2 a 1-nearest neighbor graph for the same problem 

and the same distance function is shown. While this graph is 
less crowded than RNG and is easier to read and interpret 
with regards to its elements, it often includes disconnected 
components, making it often difficult to see and estimate the 
data distribution as a whole with the component clusters. 
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Fig. 2. A 1-nearest neighbor graph for the same set. 

 

IV. DISCUSSION AND CONCLUSION 
In this paper two techniques for learning discriminative 

distance functions were considered; learning from 
equivalence constraints and the intrinsic RF distance. Our 
preliminary experiments confirm that both techniques 
demonstrate competitive performance with respect to the 
plain learning; they help to combine the power of strong 
“eager” learners with the transparency of case retrieval and 
nearest neighbor classification.  The intrinsic RF distance is 
proven to be more robust overall (in terms of better expected 
accuracy and fewer parameters to be tuned), although 
finding suitable parameters for learning from equivalence 
constraints may still be competitive. Future work includes 
studying various applications of the techniques to different 
subject domains with complex data, systematic analysis of 
the techniques and further validation of the findings. 

The techniques considered in this paper may be useful for 
the development of real-world case retrieval and decision 
support systems. As an example, at present we are 
developing a system called CaseReasoner intended for the 
retrieval of patient records that may include complex 
biomedical data; clinical, imaging and genomic data. The 
underlying inter-patient similarity (that can be calculated via 
distance functions learnt using techniques considered in this 
paper) can be visualized using heatmaps, treemaps and 
neighborhood graphs, for better knowledge discovery and 
decision support. An important item of our ongoing work in 
this context is the acquaintance of partner clinicians with the 
considered neighborhood graph visualizations in the 
framework of CaseReasoner, and their evaluation in the 
context of different data classification and decision support 
tasks. 
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