
  

  

Abstract— This paper discusses the needs for automated 
tools to aid in the diagnosis of thyroid nodules based on 
analysis of fine needle aspiration cytology smears. While 
conventional practices rely on the analysis of grey scale or RGB 
color images, we present a multispectral microscopy system 
that uses thirty-one spectral bands for analysis. Discussed are 
methods and results for system calibration and cell delineation. 

I. INTRODUCTION 
Thyroid nodule is one of many common cancers.  Nodules 
are more common in women and increase in frequency with 
age and with decreasing iodine intake. It has been estimated 
that up to 20% of the world population [1, 2] and 
approximately 50% of 60-year-old persons [3] have palpable 
thyroid nodule or nodules. In the US, up to 7% of the adult 
population has a palpable thyroid nodule [4]. The clinical 
spectrum ranges from the incidental, asymptotic, small, 
solitary nodule, in which the exclusion of cancer is a major 
concern, to the large, partly intrathoracic nodule that causes 
pressure symptoms, for which treatment is warranted 
regardless of cause [2]. The most common cytologic 
diagnoses of thyroid nodules are colloid nodules, cysts, 
thyroiditis, follicular neoplasm, and thyroid carcinomas. 
Colloid nodules are the most common and do not have an 
increased risk of malignancy, therefore, the choice of 
management is conservative. Follicular neoplasm includes 
follicular adenoma and follicular carcinoma, which cannot 
be distinguished visually from each other based on cytology 
and the management remains controversial [2] [5] [3]. 
Thyroid carcinoma occurs in roughly 10% of all palpable 
nodules and the management is surgical removal [6]. 
 
Recent advances in clinical oncology have significantly 
increased the survival rate for most cancer patients. Early 
detection of the disease has been partly responsible for 
improved outcomes. Cytological and histological assessment 
has played an integral and important role in cancer diagnosis 
and prognosis. It is critical for the detection and 
characterization of excised tissue and cells from nodules and 
to identify its malignancy level. Among early screening 
methods, fine needle aspiration (FNA) has been widely 
accepted as a first-line screening test in patients with thyroid 
nodule. The major role of thyroid fine needle aspiration 
cytology (FNAC) is to distinguish thyroid nodules that 
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require surgical removal due to higher risk of malignancy 
from those benign lesions that can be managed 
conservatively. According to guidelines from American 
Association of Clinical Endocrinologists, fine needle 
aspiration (FNA) is believed to be the most effective method 
available for distinguishing between benign and malignant 
thyroid nodules [7]. Its utilization has increased in recent 
years partially because of increased diagnostic accuracy and 
wide availability of image-guided techniques, which allow 
smaller nodules to be detected and aspirated. In centers with 
experience in FNA, the use of this technique has been 
estimated to reduce the number of thyroidectomies by 
approximately 50%, to roughly double the surgical 
confirmation of carcinoma, and to reduce the overall cost of 
medical care by 25% [8], as compared with surgery 
performed on the basis of clinical findings alone. 
 
In general, cytological diagnoses of thyroid disorders are 
divided into following categories: unsatisfactory/non-
diagnostic, benign/negative for malignancy, indeterminate 
for malignancy, suspicious for malignancy, and positive for 
malignancy [9].  This is turn has exerted an increased impact 
on histological assessment in conjunction with early 
screening methods, moving it from an ancillary diagnostic 
tool to a stand-alone diagnostic procedure. FNAC is 
progressively replacing other methods such as 
radionucleotide scanning, because of more accurate 
diagnosis, expediency in obtaining treatment, overall cost of 
patientcare and smaller biopsy samples.  As such there has 
been a concomitant increase in the demand for analysis tools 
for assessment of FNAC, with cell segmentation being a 
critical impediment to automated solutions. The 
cytodiagnosis of thyroid nodules by FNA is complex for the 
following reasons [10]: 

• overlap of cytological patterns between neoplastic and 
non-neoplastic lesions.  

• overlap of cytological features between neoplasms.  
• coexistence of non-neoplastic and neoplastic processes 

and multiple malignancies in the same gland.  

Currently, the "gold standard" for diagnosis of follicular 
adenoma and follicular carcinoma are histology. In many 
cases, the distinction between them can be difficult even on 
the postoperative histologic specimen [11]. Indeterminate or 
follicular lesions are thyroid lesions described as having 
cytologic evidence that may be compatible with malignancy 
but are not amenable to easy diagnosis. The recommendation 
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for managing patients with nodules in this category is 
surgery. However, only about 30% of the cases are proved to 
be malignant on histology, remaining is benign which would 
be better managed by clinical follow up instead of surgery. 
Currently, there are no reliable methods to differentiate 
follicular adenoma from follicular carcinoma before surgery. 
We believe that spectral microscopy may provide additional 
information that can aid in improving the overall diagnostic 
accuracy [12]. Nonetheless, typical challenges of cell 
delineation remain to be addressed before an automated 
solution that can aid overall diagnostic effort can be 
developed. 
 
In this paper, we present a multispectral microscopy system 
capable of acquiring spectral images under transmitted 
illumination and a watershed-based method for delineating 
cells. Several key steps have to be performed to automate 
this task, including system calibration, image acquisition, 
and cell segmentation. The remainder of the paper is 
organized as follows: section II presents the imaging system 
used to acquire spectral images and its relevance to FNAC 
smears analysis. The importance of calibration and the 
developed method is discussed.  Section IV presents the 
segmentation approach used to delineate cells in the images 
along with obtained results on a dataset of images. Finally, 
conclusions appear in section V. 

II. MULTISPECTRAL MICROSCOPY 
Multispectral imaging combines two technologies that have 
independently evolved for the last several decades, namely 
spectroscopy and imaging.  Systems that leverage the two 
technologies simultaneously have been used in the fields of 
astronomy [13], remote sensing [14], and chemical 
compound analysis [15] to identify the composition and 
characteristics of celestial, terrestrial, and atmospheric 
elements.   In recent years, spectral imaging has also been 
used in biomedical applications such as spectral karyotyping 
[16], general cell visualization [17], cell trafficking of 
variously colored fluorescent proteins [18], and 
differentiation of pathologies [19].  Spectral imaging 
systems developed to facilitate various biomedical 
applications have typically been coupled with traditional 
microscopes to enable spectral microscopy.  Spectral 
microscopes provide the combined benefits of spectroscopy 
and imaging microscopy, resulting in the ability to acquire 
spectral images of microscopic specimen. 
 
More recently, multispectral microscopes capable of 
acquiring spectral images under transmitted illumination 
have also been used to digitize and analyze cell smears [12] 
[20]. Spectral imaging allows for the simultaneous 
measurement of spectral and spatial information of a sample 
such that the measurement of the spectral response at any 
pixel of a two-dimensional image is possible. Studies have 
shown that biological tissue exhibits unique spectra in 
transmission. By exploring the spectral differences in 

cellular pathology, many chemical and physical 
characteristics not revealed under traditional imaging 
systems can be realized and used to improve the analysis 
efforts. 
 
We have assembled a multispectral microscopy system 
capable of acquiring spectral images under transmitted 
illumination. The system comprises of a standard light 
microscope coupled to a spectral dispersion component that 
separates the light into its spectral components.  The 
microscope itself is coupled to a two-dimensional (2D) 
optical detector such as a CCD camera. In our case, we use a 
quarter-meter class, Czerny-Turner type monochromator 
from PTI (http://www.pti-nj.com) that provides a tunable 
light emission spectrum at 2nm resolution. We currently 
utilize a wavelength range from 400-700nm. The 
monochromator is connected to an Olympus 
(http://www.olympus.com) BX51 upright optical 
microscope such that the light output from the 
monochromator feeds into the transmitted light path of the 
microscope. An Olympus UPlanApo 40X NA 0.9 is used for 
imaging.  The Photometrics SenSysTM CCD camera 
(http://www.roperscientific.com) having 768 x 512 pixels 
(9x9µm) at 8-bit digitization is used, which provides for 
high-resolution low light image acquisition.  This camera is 
used for acquisition of spectral images.   
 
To image each sample, the illumination from the 
monochromator is adjusted by achieving Kohler illumination 
for uniform excitation of the specimen. The condenser, 
aperture diaphragm, and the field stop are kept constant 
during measurements. To calibrate the variations due to 
illumination effects and varying quantum efficiency of CCD 
cameras at different wavelengths, we normalize the camera 
exposure for each wavelength while avoiding saturation.  
The underlying assumption is that the incident light should 
be uniform across all wavelengths.  Since measurement of 
incident light is proportional to average background 
intensity, the problem of calibration is posed as computing 
exposures for each wavelength such that the resultant 
exposure values across the spectra generate uniform average 
background intensity.  To achieve this objective, we pose the 
problem as one of equalizing the image Average Optical 
Density (AOD) across all the wavelength-exposure pairs. 
Wavelength-exposure pair images are the set of varying 
exposure images for each wavelength. A least square error 
solution is chosen to compute the final exposure values 
across the entire wavelength range [21].  
 
The developed calibration algorithm has been integrated 
with our assembled automated microscope.  Using a variety 
of commercial optical filters as standards, we have 
performed quantitative evaluation of the calibrated system.  
Manufacturers of optical filters quantify the stop- and pass- 
bands using well-tuned spectrophotometers and make the 
profiles available to end-users.  We have compared the 
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measured spectral profile of several filters as obtained by our 
calibrated system.  Figure 1 shows an overlay of 
manufacturer supplied and the measured profile for five 
different filters. In each of the cases, the profiles have over 
98% correlation. 

 
Figure 1. Comparison of manufacturer supplied and measured spectral 
profile of five different filters using the calibrated spectral microscope. 
 
Following calibration, automatic focusing is performed at 
the central wavelength of 550nm to minimize the chromatic 
aberration at all wavelengths. Spectral image set is acquired 
by stepping the monochromator from 400nm to 700nm 
illumination in 10nm increments, resulting in a total of 31 
images for each field-of-view. 

III. CELL SEGMENTATION 
Watershed based method [22] has been preferred by many 
researchers and applied to the problem of cell image 
segmentation because of its ability to deal with touching and 
overlapped regions. In watersheds, a 2-D image is treated in 
three dimensions: two spatial coordinates versus gray levels. 
The gray level of each pixel represents the elevations of the 
watershed surface. Points at which water would be equally 
likely to fall into more than one minimum consist of the 
watershed lines. Points at which a drop of water would fall 
into a single minimum consist of catchment basin. 
Watershed lines separate catchment basin into non-
overlapped regions [23]. It is a region growing method and 
groups of pixels called ``seeds" are needed to initialize the 
growing process [24].  
 
The initialization step is deemed as the most critical moment 

in a growing process [24].  Lezoray [25] suggested a 
supervised automatic clustering method, in which, each 
color plane is clustered independently by applying watershed 
operation on the gray-scale histogram. Each section in the 
cluster corresponds to a representative class of pixels in the 
image. The clustering information from different color 
planes is then blended together. However, spatial 
information is lost because of the use of the histogram. 
Touched cells are also clustered together in the supervised 
clustering process. To preserve the intensity variance 
information in the spatial domain, we apply an unsupervised 
clustering method to locate the ``seed" for each region by 
using regional minima/maxima extraction. 
 
Direct application of the watershed algorithm generally leads 
to over-segmentation problem due to noise and other local 
irregularities, such as the gradient [23]. We employ 
morphological self-dual reconstruction, which turns out to 
be extremely useful for image filtering and segmentation 
task [22]. Morphological self-dual reconstruction consists of 
reconstruction by geodesic dilation and erosion. This 
effectively reduces the intensity variance in a local area 
while preserving the intensity distribution information across 
the whole image. After applying morphological grayscale 
reconstruction to the image in each channel, the 
unsupervised clustering process is done by h-extrema 
extraction. In morphology, a regional minima 

� 

M  of an 
image 

� 

f  at elevation 

� 

t  is a connected component of pixels 
with the value 

� 

t , such that every pixel in the neighborhood 
of 

� 

M  has a strictly higher value. To further suppress the 
irrelevant image features, we use 

� 

h-minima transformation 
that will exclude all minima whose depth is lower or equal to 
a given threshold level 

� 

h . This transformation is defined as 
the dual process of 

� 

h -maxima extraction which is done by 
performing the reconstruction by dilation of 

� 

f  from 

� 

f − h . The regional minima from each channel is fused to 
identify ``seeds" for watershed initialization.  In addition, 
edges in the image are enhanced to form constraints for the 
region growing process.  
 
The above algorithm provides reasonable results for 
segmentation of cells in brightfield images.  To enhance the 
algorithm for use with spectral images, we pre-process 
spectral image by leveraging absorption information 
calculated for each pixel across all spectral bands [21].  
Specifically, we perform a hierarchical analysis based on 
band selection.  The notion of band selection is based on 
selection or extraction of specific wavelength images from 
the spectral data cube that can maximize discriminative 
information for a specific task.  We use Bhattacharyya 
distance as the discriminant measure to identify relevant 
spectral bands to be extracted for the purpose of maximizing 
separation of different cell types in the specimen [26]. Using 
the identified bands, a new image cube is generated and the 
developed enhanced watershed approach is used to segment 
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and delineate the cells. 
In our preliminary findings, we imaged 20 thyroid FNAC 
smears stained with the Papanicolaou stain. Each smear was 
imaged at 40x magnification under both the multispectral 
imaging system and color imaging system.  Images were 
manually analyzed to establish ground truth and a count of 
target cells in each image. Segmentation using multispectral 
absorption image excludes almost all the blood cells while 
segmentation using color image has difficulties in separating 
blood cells from target cells.  For the entire dataset, the 
detection accuracy of the method applied to the absorption 
image is found to be 95.19% with a false positive rate of 
2.12%.  Accuracy of target cell segmentation increases less 
than one percentage compared to segmentation using the 
color image.  However, 25.26% decrease in the false 
positive rate is achieved using the proposed method on the 
absorption image as compared to the color image. Figure 
2(a) shows the results of cell delineation using the color 
image while figure 2(b) shows the results overlayed on a 
representative image from the spectral stack. 

 
Figure 2. Result of applying watersheds segmentation on color image 
(a) and the corresponding spectral image (b). 

IV. CONCLUSIONS 
We have presented a multispectral imaging system and 
associated algorithms for calibration and cell segmentation 
for application in automated analysis of thyroid fine needle 
aspiration cytology smears. The automated system uses a 
standard optical microscope coupled with a monochromator 
to acquire spectral images under transmitted illumination.  
An algorithm for system calibration is presented which is 
necessary to correct for various interferences that occur 
during the imaging process that can affect the ability to 
quantify the images and compute true spectral profiles of 
cells of interest.  An algorithm for automated cell 
segmentation using the spectral image stack is also 
presented.  Results of segmentation are compared against 
those obtained by the use watershed-based cell segmentation 
on color images. 
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