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Abstract— Finding point correspondences plays an important
role in automatically building statistical shape models from a
training set of 3D surfaces. Davies et al. assumed the projected
coefficients have a multivariate Gaussian distributions and
derived an objective function for the point correspondence
problem that uses minimum description length to balance the
training errors and generalization ability.

Recently, two-dimensional principal component analysis has
been shown to achieve better performance than PCA in face
recognition. Motivated by the better performance of 2DPCA,
we generalize the MDL-based objective function to 2DPCA in
this paper. We propose a gradient descent approach to minimize
the objective function. We evaluate the generalization abilities
of the proposed and original methods in terms of reconstruction
errors. From our experimental results on different sets of 3D
shapes of different human body organs, the proposed method
performs significantly better than the original method.

I. INTRODUCTION

Finding point correspondence is essential for automatically

building statistical shape models [1] from a training set of

3D surfaces. Statistical shape models are widely used in

model-based image segmentation and tracking [1]. Davies et

al. [2] assumed the projected coefficients have multivariate

Gaussian distributions and derived an objective function

for point correspondence problems that uses minimum

description length (MDL) to balance the training errors

and generalization ability. A recent evaluation study [3]

that compares several well known 3D point correspondence

methods for modeling purposes shows that the MDL-based

approach [2] is the best method.

Recently, two-dimensional principal component analysis

(2DPCA) [4] has been shown to achieve better performance

than PCA in face recognition [4]. In contrast to the

conventional method of using a vector to represent a shape,

2DPCA represent a shape by a two-dimensional matrix.

In this paper, we generalize the MDL-based objective

function [2] to 2DPCA. We propose a gradient descent

approach to minimize the objective function. We compare

the generalized MDL objective function for 2DPCA with

the original one and evaluate their abilities in terms of recon-

struction errors. From our experimental results on different

sets of 3D shapes of different organs, the proposed method

performs significantly better than the original method.
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II. RELATED WORK

Assume that we have a training set of N 3D shapes

and each shape is represented by M 3D landmarks points.

Conventionally, we can represent each such shape by a vector

x whose dimension is 3M × 1 and let Ωt = {xi|i =
1, . . . , N} denote the training set of N 3D shapes.

A. PCA

PCA is a common approach to model the shape variations

of a given training set of 3D shapes. Given Ωt, the total

scatter matrix S is defined as

S =

N
∑

i=1

(xi − x̄)t(xi − x̄) (1)

where x̄ is the mean shape vector as defined below.

x̄ =

∑N
i=1

xi

N
(2)

PCA finds a projection axis b that maximizes b
t
Sb.

Intuitively, the total scatter of the projected samples is

maximized after the projection of the samples onto b. The

optimal K projection axes bk, k = 1, . . . ,K that maximize

the above criterion are the eigenvectors of S corresponding to

the largest K eigenvalues, {λk|k = 1, . . . ,K}. The recon-

struction x̃ of shape vector x can be used to approximate

it.

x̃ = x̄ +

K
∑

k=1

ckbk (3)

where ck = (x − x̄)t
bk.

B. Correspondence by Minimizing Description Length

Davies et al. [2] proposed a MDL-based objective function

to quantize the quality of the correspondence. In this paper,

we use the simplified version of the MDL, F , proposed by

Thodberg [5] as defined below.

F =

N
∑

k=1

Lk with Lk =

{

1 + log(λk/λcut), if λk ≥ λcut

λk/λcut, otherwise

(4)

Given a set of shapes and a set of known correspondences,

PCA is computed on the set of shapes and the computed

eigenvalues, {λk|k = 1, . . . , N}, are used to calculate

F in eqn. (4). λcut is a parameter that represents the

expected noise in the training data and its value is manually

determined.

Given the above MDL-based objective function, an

efficient method for manipulating correspondences and an
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optimization algorithm that minimizes the objective function

are required in order to find optimal correspondences

[1]. Typically, manipulating correspondences is treated as

parameterizing and then re-parameterizing the surfaces.

A parameterization assigns every point on the surface of

the mesh to a unique point on the unit sphere, although

parameterizations may not exist for arbitrary surfaces. In

this paper, we assume that the 3D shapes are closed two-

manifolds of genus 0 (e.g., a sphere). We use a conformal

mapping as a parameterization and a reparameterization that

modifies the parameterization based on kernels with strictly

local effects, as developed in [6].

We assume that the parameterization of the ith shape

is controlled by some parameter vector αi, for which the

individual parameters are given by {αi,a|a = 1, . . . , A}. The

gradient descent approach is used to minimize F with respect

to a parameter vector αi. The Jacobian matrix for the gradient

of the objective function is defined as

∂F

∂αi,a

=

N
∑

k=1

∂Lk

∂λk

∂λk

∂αi,a

(5)

It is easy to compute ∂Lk

∂λk
and so we focus on ∂λk

∂αi,a
in

the following discussions. ∂λk

∂αi,a
can be computed by using

the following chain rule for derivatives.

∂λk

∂αi,a

=
∂λk

∂xi

t ∂xi

∂αi,a

(6)

While ∂xi

∂αi,a
is typically computed by using finite differ-

ences, the following analytic form for ∂λk

∂xi
exists.

∂λk

∂xi

= 2ci,kbk (7)

where ci,k is the projection coefficient of the i-th shape

vector xi onto the k-th eigenvector bk.

C. 2DPCA

The idea behind [4] is to project a 3×M shape matrix X

onto an M × 1 vector b by the linear transformation.

c = Xb (8)

The 2DPCA scatter matrix G is defined as

G =
N

∑

i=1

(Xi − X̄)t(Xi − X̄) (9)

where

X̄ =

∑N
i=1

Xi

N
(10)

Similar to PCA, the goal of 2DPCA is to find a projection

axis that maximizes b
t
Gb. The optimal K projection axes

bk, k = 1, . . . ,K that maximize the above criterion are the

eigenvectors of G corresponding to the largest K eigenval-

ues. For a shape matrix X, its reconstruction X̃, defined

below, can be used to approximate it.

X̃ = X̄ +

K
∑

k=1

clbl
t (11)

where ck = (X − X̄)bk.

III. THE PROPOSED METHOD

We extend the MDL-based objective function, eqn. (4), to

2DPCA. In other words, instead of using the eigenvalues

computed by PCA, we propose to use those computed

by 2DPCA. We propose a gradient descent approach to

minimize the objective function based on the ideas in sub-

section II.B. to compute the Jacobian matrix for the gradient

of the objective function. In order to reuse eqn. (5) and

eqn. (6), eqn. (7) must be extended to 2DPCA. Let the

eigendecomposition of G be defined by

D = U
T
GU (12)

where D is the diagonal matrix composed of the eigenvalues

of G, and U is a matrix composed of eigenvectors of G. The

extension of eqn. (7) to 2DPCA is defined by The extension

of eqn. (7) to 2DPCA is approximated by

∂D

∂Xi(j, k)
≈ U

t(2(Xi − X̄)t
Jjk)U (13)

where Jjk is a binary matrix all of whose elements are zeros,

except the element at position (j,k), which is one.

IV. EXPERIMENTS

We have 3D triangular mesh models of 20 livers, 17 left

kidneys, 15 right kidneys, and 18 spleens as shown in Figure

1. All 3D meshes are constructed from CT scans of different

patients and the 3D point correspondence problems among

different 3D mesh models of the organs are solved1. Our

implementation is built on top of [7][6] that implements the

ideas described in subsection II.B. All the mesh models of

the same organ have the same number of vertices (2563) and

the same number of faces (5120), and all vertices are used

as landmarks to represent the shapes.

We follow a standard procedure extensively used in

[2][1][3][6] to compare different point correspondence meth-

ods when the ground truth correspondences among different

shapes are not available. Given the correspondences com-

puted by different correspondence methods, the standard

procedure is to measure the difference between an unknown

shape and its reconstruction. Leave-one-out cross validation

is used to determine how accurately an algorithm will be

able to predict data that it was not trained on. In order to re-

flect different definitions of shape similarities, the Euclidean

distance (i.e, the sum of the distances between all pairs of

corresponding landmarks) and Hausdorff distance2 are used

to measure the shape difference between two shapes.

1We constructs the shape of an organ from manual segmentation of CT
scans of a patient by using marching cubes in ITK-SNAP

2Given a pair of two 3D point sets, A and B, the Hausdorff distance
between A and B is given by:

H(A, B) = max{min
p∈A

min
q∈B

d(p, q), min
q∈B

min
p∈A

d(p, q)} (14)

where d(p, q) is the Euclidean distance between two 3D points, p and q.
To compare a pair of two shapes, the Hausdorff distance between the two
vertex sets of this given pair of shapes is computed.

5658



Even though different correspondence methods use differ-

ent kinds of criteria [1][3] to find the correspondences, the

standard procedure [2][1][3][6] uses PCA to model the vari-

ations of the shapes whose correspondences are estimated.

A potential problem here is that using PCA is biased to the

MDL objective function, because the sum of eigenvalues is

a good indicator for estimating the reconstruction errors and

the computation of the MDL objective function [2] involves

the eigenvalues of PCA. To avoid this potential problem and

to be more fair, the original MDL method uses PCA to model

shapes, while our extension uses 2DPCA to model shapes.

Figures 2 and 3 show the average leave-one-out recon-

struction errors for different organs. From these two figures,

it is clear that the combination of the proposed MDL for

2DPCA and reconstruction using 2DPCA is better than the

combination of MDL for PCA and reconstruction using PCA

in all test data sets. In addition, as the number of eigenvectors

in use increases, the reconstruction error decreases, due to

the use of more variables to encode the shape variations.

However, as the number of eigenvectors in use increases,

the differences between the reconstruction errors of these

two methods decreases (Figure 2), while as the numbers

of eigenvectors in use increases, the difference between the

reconstruction errors of these two methods can increase

accordingly (Figure 3). One possible explanation is that

the MDL objective functions and the error measures being

minimized are all related, to some degree, to Euclidean dis-

tances, and so their performances may potentially converge

to similar reconstruction errors in terms of Euclidean distance

if there is infinite training data. However, their performances

may not converge to similar reconstruction errors in terms

of Hausdorff distance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we generalize the MDL-based objective

function to 2DPCA and propose a gradient descent approach

to minimize the objective function. From our experimental

results on different sets of 3D shapes of different organs,

the combination of the proposed MDL for 2DPCA and

reconstruction using 2DPCA is significantly better than the

combination of MDL for PCA and reconstruction using PCA.

Instead of using the reconstruction errors, which depend

on the particular reconstruction methods, to compare differ-

ent correspondence methods, we plan to use some datasets

whose ground truth correspondences are known to directly

compare the proposed method with other existing methods.

In addition, many different methods [8][9][10] for modeling

shapes have been shown to have better potential than PCA.

How to generalize MDL-based objective functions to these

different approaches is an important direction we will pursue.

Furthermore, we would like to relax the assumptions Davies

et al. made in [2]. One such assumption is that the projected

coefficients in different eigenvectors are independent. How-

ever, this assumption may not hold in 2DPCA or the general

case.

(a) Livers (b) Left kidneys

(c) Right kidneys (d) Spleens

Fig. 1: The 3D triangular meshes of different organs we use

in the experiments.
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Fig. 2: Generalization ability comparisons in terms of Eu-

clidean distance in different datasets.
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Fig. 3: Generalization ability comparisons in terms of Haus-

dorff distance in different datasets.
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