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Abstract— In this study, a signal analysis framework based
on the Karhunen-Loève expansion and k-means clustering
algorithm is proposed for the characterisation of arteriovenous
(AV) fistula’s sound recordings. The Karhunen-Loève (KL) co-
efficients corresponding to the directions of maximum variance
were used as classification features, which were clustered ap-
plying k-means algorithm. The results showed that one natural
cluster was found for similar AV fistula’s state recordings. On
the other hand, when stenotic and non-stenotic AV fistula’s
recordings were processed together, the two most significant
KL coefficients contain important information that can be used
for classification or discrimination between these AV fistula’s
states.

I. INTRODUCTION

Arteriovenous (AV) fistula is a vascular access used for

cannulation in hemodialysis treatment. A surgeon creates

an AV fistula by connecting an artery directly to a vein.

The connection point is referred as anastomosis and it is

commonly located near the patients wrist or elbow.

The most common fistula failure is venous stenosis [1].

Stenosis is an abnormal narrowing in a blood vessel or other

tubular organ or structure. When blood is ejected through

narrow vessels or arteries, the blood flow becomes turbulent.

These turbulences generate measurable sounds “murmurs”

that can be used for early and non-invasive diagnosis of

stenosis [2].

In coronary artery diseases, murmurs have been associated

with more spectral energy in the higher frequency bands. In

[3], it is shown that the frequency bands where this extra

spectral energy is located depend on the applied spectral

analysis method e.g. eigenvector method. In a comparative

study of diseased and normal patients, it was found that

the extra spectral energy in the band between 300 and 800

Hz was significally reduced in normal patients [4]. In vivo

studies have also been conducted [5], [6]. In [5], the wavelet

transform was used to characterise turbulent sounds caused

by a controlled occlusion in the femoral artery of dogs. The

results showed that in the time domain, the turbulent sounds

occurred at the peak of the blow flow and that the heart

sounds contained more energy in the band between 200 and

1000 Hz.
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Even though phonoangiography has been used extensively

in coronary artery diseases, few studies have been carried out

in venous stenosis. In [7], it is shown that normal fistulas

have highest signal amplitude close to the anastomosis and

it declines when you move downstream. Moreover, it was

found that in the time domain the systolic peak of stenotic

segments is higher and narrower compared to non-stenotic

segments.

The purpose of the present paper is to identify features

of the AV fistula’s sound recordings that can be utilised

for characterising the state of the fistula. The signal anal-

ysis framework combines Karhunen-Loève expansion and k-

means algorithm. The idea is to evaluate if the directions of

maximum variance can contain good feature for classification

or discrimination of AV fistula’s state. This paper is organised

as follows. Section 2 presents a description of the dataset and

the methods used to characterise the recordings. The results

are described in section 3 and finally the conclusions and

future works are presented in section 4.

II. METHODOLOGY

In this section, the dataset used in the present study and

the proposed signal analysis framework are described. The

signal analysis framework is comprised of three stages. At

the pre-processing stage, the envelope of the fistula’s sound

recording is computed and segmented, i.e. the timing of the

maximum peaks are determined. Then, the mean correlation

matrix Rx is estimated and the Karhunen-Loève expansion

is used to compute and determine the most significant

basis functions. Finally, the classification of the principal

components is carried out by k-means clustering algorithm.

A. Dataset

The recordings were made in end-stage renal failure pa-

tients. These patients underwent hemodialysis treatment three

times a week. Six patients were selected from the dataset

available in [7]. The first five patient were selected according

to the following criteria: 1) No history of the stenosis at the

anastomosis and 2) at least 40 seconds recordings. One extra

patient was selected because underwent angioplasty during

the measurement campaign and it provides a valuable before

and after case. For the latter patient, recordings at the site

of the lesion were made before and after angioplasty. Table

1 summarises the details of the dataset.

B. Pre-processing

Before computing the envelope of the signal, distorting

components, e.g. baseline wander, and sounds not originating
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TABLE I

MEASUREMENT POINT AND DURATION OF THE FISTULA’S SOUND

RECORDINGS

Patient Recording Site Duration Heart rate

P1
Anastomosis session 1 30 Sec 66 bpm
Anastomosis session 2 15 Sec 68 bpm

P2
Anastomosis session 1 30 Sec 66 bpm
Anastomosis session 2 15 Sec 67 bpm

P3
Anastomosis session 1 30 Sec 74 bpm
Anastomosis session 2 15 Sec 75 bpm

P6
Anastomosis session 1 30 Sec 74 bpm
Anastomosis session 2 10 Sec 78 bpm

P7
Anastomosis session 1 30 Sec 73 bpm
Anastomosis session 2 30 Sec 72 bpm

K2
Before angioplasty 40 Sec 93 bpm
After angioplasty 20 Sec 95 bpm

from the fistula were removed by feeding the signal to a 50

Hz high-pass filter.

The envelope of the signal s(n) was calculated utilising

the method described in [8], where the envelope is expressed

as

x(n) =
√

s2(n) + š2(n), (1)

and š2(n) is the Hilbert transform of s(n). Then, the enve-

lope was filtered with a 10 Hz low-pass filter and the index of

the maximum peak was determined for every pulse interval

present in the envelope. Since the detected segments were not

equally long, the segments were aligned to the maximum

peak and a fixed duration, around it, was used for all the

segments. This fixed duration was based on the heart rate of

the patient at the moment of recording. Subsequently, each

detected segment was normalised in amplitude as follows

xi =
x
∗

i

max(x∗i )
, (2)

where x
∗

i is the ith unnormalised detected segment. When

fistula’s sound recordings of different patients were com-

bined and processed together, each segment was considered

as a zero mean process, i.e. the mean of the segment was

subtracted from it. However, when recordings of the same

patient were processed, the mean was kept because this

procedure would discard important information [9]. Fig. 1

shows an example of the sound signal s(n), envelope x(n)
and filtered envelope.

C. Karhunen-Loève Expansion

A normalised detected segment can be represented by a

linear combination of basis functions ϕk:

xi =

N
∑

k=1

wi,kϕk. (3)

The KL basis functions were obtained as the most sig-

nificant eigenvectors of the mean correlation matrix Rx that

results from the normalised detected segments in the signal’s

envelope.

Once the eigenvectors and eigenvalues of Rx were calcu-

lated, the cumulative energy index described in [8] was used
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Fig. 1. Three seconds example of the sound signal, envelope and filtered
envelope

to determine the energy content in each basis function. This

index is expressed as

RK =

K
∑

k=1

λk

L
∑

k=1

λk

. (4)

The KL basis functions which contain the 95% of the

total energy were considered as the most significant. Subse-

quently, each KL coefficient vector wK,i was calculated as

follows

wK,i = Φ
T
xi and Φ = [ϕ

1
ϕ

2
· · · ϕK ] , (5)

where K denotes the number of most significant basis

functions.

A KL coefficient vector, wK,i was considered as outlier

if

wK,i < q1 − 1.5H or wK,i > f3 = q3 + 1.5H, (6)

where q1, q3 and H are the first quartile, third quartile,

and interquartile range respectively [10].

D. K-means Algorithm

K-means is an unsupervised learning algorithm that solve

the well known clustering problem. The algorithm is com-

posed of the following steps [11]:

1) Select the number of clusters: c and the initial cen-

troids: µ1, ..., µc.

2) Classify samples according to nearest µi.

3) Recompute µi.

4) Repeat steps 2 and 3 until µi no longer move.

5) Return the centroids: µ1, . . . , µc.

The selection of the initial centroids was carried out in

two steps: 1) the centroids were selected randomly from
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a 10% KL coefficients subset, then k-means algorithm was

applied to the subset. 2) The resulting centroids were used

to initialise the k-means algorithm, but this time applied to

all the KL coefficients.

A square Euclidean distance metric was used to classify

the KL coefficients,

D =

K
∑

i=1

(wi − vi)
2
, (7)

where wi and vi have K coordinates corresponding to the

most significant basis functions.

III. RESULTS

A. Basis Functions

The cumulative energy index, RK , was calculated for all

the recordings. In all cases, the two most significant KL basis

functions accounted together for at least 95% of the total

energy.

The ten recordings at the anastomosis were processed

together and the two most significant basis functions are

shown in Fig. 2. These two functions may be interpreted

as follows: the most significant basis function reflects the

average shape of the pulse waveform. Meanwhile, the second

basis function reflects delayed contributions to the pulse

waveform. If the anastomosis’s recordings are processed by

patient, the energy increases to 99% and the basis functions

are very similar to the shown ones in Fig. 2.

For the case of before and after angioplasty (patient K2),

the recordings were combined and the most significant basis

functions are shown in Fig. 3. Both basis functions are

similar to the obtained ones for the anastomosis’s recordings

(see Fig. 2) and the change in the sign of the second basis

functions can be given to numerical issues.

B. Clustering

For every segment xi, the KL coefficients corresponding

to the most significant basis functions were computed using

(5) and clustered with k-means algorithm.
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Fig. 2. The 2 most significant KL basis functions: anastomosis’s recordings
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Fig. 3. The 2 most significant KL basis functions: patient K2

For the anastomosis recordings, an unknown number of

classes were considered in the data. Therefore, the clus-

tering problem was solved repeatedly for different number

of clusters. The results suggest one natural cluster because

independently of the number of clusters, the distribution of

the coefficients tends to be equitable, i.e. similar amount of

coefficients contributed by each patient to the same cluster.

This can be explained by the fact that according to the

clinic records, all AV fistulas were working properly, i.e. no

stenosis at the anastomosis by the time the recordings were

made [7]. Hence, the proposed signal analysis framework

seems to be not affected by parameters that change from

patient to patient such as vessel’s diameter and blood flow

velocity.

For patient K2, the number of classes were known: two.

All the recordings of this patient were processed together

and the two most significant basis functions were utilised

to compute the KL coefficients. Since, the solution of k-

means depends on the initial centroids, a local minimum

can be reached. To overcome this problem, 10 replicates were

carried out and the one with the lowest total sum of distances

is shown in Fig. 4. The first cluster is mainly formed

by coefficients coming from after angioplasty recordings

69.1%. Meanwhile, cluster 2 has 87.1% of the coefficients

coming from before angioplasty recordings, see table 2.

Since some factors as a variations of the heart rate (caused

by the parasympathetic and sympathetic activity) can affect

a detected segment and therefore the KL coefficients, the

misclassification shown in table 2 was expected. Thus, the

results of k-means should be analysed based on the dominant

behaviour of a recording rather than by detected segments.

However, a threshold cannot be defined in this study due to

the lack of data.

In summary, the KL coefficients definitely contain infor-

mation that can be used for classification or discrimination

of AV fistula’s states. However, the results are preliminary

and need to be further confirm by applying the method to a

wider dataset.
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Fig. 4. Resulting clusters: before and after angioplasty

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

A signal analysis framework for sound recordings of

arteriovenous fistula based on principal component analysis

and k-means algorithm is proposed. The results showed that

the proposed signal analysis framework was consistent for

similar AV fistula’s state recordings for different patients.

On the other hand, when stenotic recordings of AV fistulas

were processed together with non-stenotic recordings, it was

found that the KL coefficients corresponding to the most

significant basis functions are potential features for classifi-

cation or discrimination of AV fistula’s states. However, the

significance of these results need to be further established.

B. Future Works

The extension of the dataset is planned through data acqui-

sition campaigns at Lund Hospital, Lund, Sweden and private

hemodialysis clinics in Nicaragua to validate the results

achieved with the proposed signal analysis framework.
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TABLE II

NUMBER OF COEFFICIENTS PER CLUSTER: BEFORE AND AFTER

ANGIOPLASTY.

Recording Site Cluster 1 Cluster 2 Total

Before Angioplasty 8 54 62

After Angioplasty 22 10 32

Total 30 64 94
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