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Abstract—Discrimination of murmurs in heart

sounds is accomplished by means of time–frequency

representations (TFR) which help to deal with non–

stationarity. Nevertheless, classification with TFR

is not straightforward given their large dimension

and redundancy. In this paper we compare several

methodologies to apply Principal Component Analy-

sis (PCA) to TFR as a dimensional reduction scheme,

which differ in the form that features are represented.

Besides, we propose a method which maximizes in-

formation among TFR preserving information within

TFRs. Results show that the methodologies that

represent TFRs as matrices improve discrimination of

heart murmurs, and that the proposed methodology

shrinks variability of the results.

I. INTRODUCTION

Cardiac murmurs are non–stationary signals that

exhibit sudden frequency changes and transients, there-

fore, the time–frequency representation (TFR) has been

proposed before to investigate the correlation between

the time–frequency (t–f ) characteristics of murmurs and

the subjacent cardiac pathologies [1]. For that matter,

parametric estimations of TFR that are based upon

parameterized expressions of the time–dependent au-

toregressive modeling are generally employed [2]. Due to

its intrinsic generality, parametric time varying autore-

gressive (TVAR) models had provided useful empirical

representations of non–stationary time series in biomed-

ical signal analysis [3].

Despite of the appealing features of TFR to deal with

non–stationary signals, their major drawback to use

them in classification is the large quantity of redundant

data which they contain. Thus, there is a growing need

for new data reduction methods that can accurately

parameterize the activity in TFR of biosignals [4], being

PCA a widely used technique which performs a singular
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Nacional de Colombia ldavendanov@unal.edu.co 2Universidad
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value decomposition t–f domains. PCA transformation

produces an uncorrelated feature set by projecting the

data onto the eigenvectors of maximum variability, pro-

viding a mean of dimensionality reduction. The question

arises on how PCA should be accomplished in TFR

in order to reduce dimension of t–f planes keeping

information to maximize accuracy rate of classification.

A major motivation in this work is to generate a set

of parametric TFR–based features extracted from PCG

recordings, capable of detecting murmurs with higher

accuracy than using static features. So, the aim of the

present work is to evaluate the best set of dynamic

features, estimated from parametric–based TFR and

extracted with different forms of linear decomposition

methods, suitable for the classification of heart mur-

murs. As criteria of comparison classifier accuracy is

suggested, namely, by using the well-known k-nearest

neighbors (k–nn) approach, that is assumed to be ade-

quate, since it directly measures the distance from a test

set item to each of the training set items immersed in

Euclidean t–f planes.

II. BACKGROUND

A. TFR–based Feature Extraction using PCA

Conventional PCA. Let Θ = {θj : j = 1, . . . , n}

be a set of objects described for p random variables

{ξi, i = 1, . . . , p, }. That is, for each object we have

the data set (ξ1(θj), ξ2(θj), · · · , ξn(θj))
T ∈ R

p, and can

build the centralized data matrix:

X = [θ1 − θ|θ2 − θ| · · · |θn − θ]T, θ =
1

n

n
∑

j=1

θj (1)

The conventional PCA looks for an orthogonal trans-

formation (W TW = Iq), Wp×q, projecting the data

onto a new set of variables with maximum variance. For

that, we set Y = XW when

W = argmax
W

tr(W TXTXW ).
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In practice, the solution is found by setting the

columns of W to the q leading eigenvectors of the

covariance matrix XTX.

From now, we consider the variables {ξi} are also

time–dependent and have been mesaured upon a set of

m time instants. So, for each object we have the data

set
{

ξk
i (θj) : i = 1, . . . , p, k = 1, . . . , m

}

, where notation

ξk
i (θj) stands for i−th variable, measured for j−th

object, at k instant of time.

Eigenplane–approach. This approach deals with the

stochastic nature of variables by assuming that each

instant of time ξk
i (θj) , ∀j, constitutes a new random

variable. Therefore, each object is described by:

θj =
[

ξ1

1
(θj) , . . . , ξm

1
(θj) , · · · , ξ1

p (θj) , . . . , ξm
p (θj)

]

(2)

and conventional PCA is carried out over the rewritten

from (1) centralized data matrix.

2DPCA–enhancement. Further refinement of object

description (2) can be achieved if the above vector object

representation, θj ∈ Θ, is enhanced by the next matrix,

taking into account variability of the whole variable set,

as suggested in [5]:

θj =













ξ1

1
(θj) ξ1

2
(θj) · · · ξ1

p (θj)

ξ2

1
(θj) ξ2

2
(θj) · · · ξ2

p (θj)
...

...
. . .

...

ξm
1

(θj) ξm
2

(θj) · · · ξm
p (θj)













(3)

In this case, matrix of projected data Y =

[ϑT

1
, · · · , ϑT

n]T is described by elemental matrixes ϑj =

θjW ∈ R
m×q. Reduction of model (3) is carried out over

the column of the objects, which implies that projected

variables are capturing variability of each object in time.

Nonetheless, object description (2) can be trans-

posed, as considered in [6], to compute a transformation

matrix Zm×r for reduction dimension over the rows

of θj , and hence ϑj = ZTθj , where the matrix Z is

calculated over the matrix set
{

φj = θT

j : j = 1, . . . , n
}

.

After calculation of arrangements Wp×q, Zm×r, column-

row based reduction of dimension is carried out for each

θj , that is, ϑjr×q
= ZTθjW . As a result, dimension

reduction takes into account not only instant–by–instant

variability of each random variable, given by model (2),

but also check for information variability through the

frequency spectra.

In 2D-PCA the projected data only reflect row or

column variations on each θj, which implies that not

all the contained information in θj is covered. To solve

this, another variant known as Diag 2D-PCA is to take

information from diagonals on TFR matrices.

B. Discriminant PCA–approach

It must be quoted, that PCA transformation is

intended to produce an uncorrelated feature set by

projecting the data onto the eigenvectors capturing the

highest variability. So far, all above considered PCA-

based approaches take into consideration variability

along the time and among the variables themselves, as

well. But, one might consider the information among

objects, and therefore projected features can also reflect

that variance. Pursuing of such an end, we propose to

perform a PCA transformation in a discriminant way.

The idea is to project the data by holding the maximum

information among objects but preserving constant the

variance within each object. For reaching that, we use a

Regularized Discriminant Analysis (RDA)-based proce-

dure [7].

Given the couple of sets: the object’s one

Θ = {θj}
n

j=1
, and time–dependent random variables

ξ1, . . . , ξp, where object representation, θj ∈ Θ,

can be assumed the same as (3). Then, ortogonal

transformation Wp×q is accomplished when maximizing

the next relation:

J =
tr(W TGeW )

tr(W TGiW )
(4)

where

Gi =
1

nm

n
∑

j=1

m
∑

k=1

(

θk
j − θj

)T (

θk
j − θj

)

; θj =
m

∑

k=1

θk
j

Ge =
n

∑

j=1

(

θj − θ
)T (

θj − θ
)

; θ =
n

∑

j=1

θj

Notation θk
j stands for k–th row of matrix θj . Columns

of W are obtained by q eigenvectors regarding to highest

q eigenvalues of (Gi)
−1Ge. Likewise this decomposition

can be carried out in rows and columns as in 2DPCA.

III. EXPERIMENTAL SETUP

A. Database

The database is made up of 45 de–identified adult

subjects who gave their informed consent and underwent

a medical examination. A diagnosis is carried out for

each patient and the severity of the valve lesion is

evaluated by cardiologists according to clinical routine.

A set of 26 patients is labeled as normal, while another

19 are tagged as pathological ones with evidence of

systolic or diastolic murmur, caused by valve disorders
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(see details in [8]). 8 recordings of 12 s corresponding to

the four focuses of auscultation (mitral, tricuspid, aortic

and pulmonary areas) are taken from each patient be-

ing either in post–expiratory or post–inspiratory apnea

stage. As a whole, database holds 548 heart beats in

total: 274 with murmurs (73 of diastolic class and 201

systolic) and 274 that are labeled as normal class.

B. TVAR model structure

A specific TVAR model is defined by the model order
p, the parameter vector α[t], and innovations variance
σ2

e [t]; related with spectral content in x[t] by [2]:

Sx(t, f) =
σ2

e [t]
∣

∣

∣

∣

1 +
p
∑

k=1

αi[t]e−jωkt/fs

∣

∣

∣

∣

2
, Sx(t, f) ⊂ R (5)

that can be assumed as the time–varying power spectral

density of the response signal if the system were made

stationary at the time instant t. The model order is taken

p = 7 using Bayesian Information Criteria. Represen-

tative illustrations of TFR, estimated by Kalman filter

approach [9], are shown for typical normal (Figure 1(a))

and murmur (Figure 1(b)) recordings, as well.
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Fig. 1. Examples of TFR for the considered methods of estimation

C. Dimension reduction

Prior to accomplish any of suggested transforma-

tions, a straightforward observation of TFR in Figure

1 makes clear a big amount of nil content areas (with

no informativity). Therefore, it is strongly convenient to

crop nil content areas that lie adjacent to the border of

the TFR. In this work, the working relevant rectangle

is allocated within framework described by the time

interval 0 ≤ t ≤ 0.6 s and frequency band 0 ≤ f ≤ 2000

Hz, leading to a selected area of 300 × 128 [t × f ].

Effectiveness of the dimension reduction approaches

(PCA, 2D-PCA, diagonal 2D-PCA and 2D-LDA) is

tested by comparing the percentage of variability ex-

plained with the accuracy of the classifier. The percent-

age of variability is also linked with the dimension of

the feature space, and the effectiveness of dimension

reduction can be related to the number of components

required to explain a fraction of the total variance on

the dataset.
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(a) Classification accuracy vs. percentage of variability ex-

plained by base vectors
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(b) Dimension of feature space vs. percentage of variability

explained by base vectors

Fig. 2. Tuning of number of components accomplished by the

methodologies of dimension reduction
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Fig. 3. Tuning of k–nn discriminator for the studied methodolo-

gies of dimension reduction

In Fig. 2 results of performing such test are shown.

Fig. 2(a) shows that as the percentage of variance

increases, the performance improves as well, except in

the case of diagonal 2D-PCA, whose performance de-

creases. This can be explained by the excessive number

of components needed by this methodology to explain

the same quantity of variance. In this case, diagonal 2D-

PCA might not be so recommendable to dimensionality

reduction in TFR of PCG signals. PCA accomplishes

the worst performance, but uses the least dimension of

all the methodologies. 2D-PCA and 2D-LDA have best

performance, but the dimension of 2D-LDA is slightly

lower than that of 2D-PCA.

After setting up of the number of components in
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Fig. 4. Comparison of accuracy, sensitivity and specificity for the

best configurations of the studied methodologies

each methodology, we study the sensibility of the k–

nn classifier as the number of neighbors increases. We

test odd values from 1 to 19 neighbors and measure

the accuracy of the classifier. In Fig.3 we show the

results of this experiment. The overall performance of

classifiers is similar to that described in the previous

test. Nonetheless, it can be seen that the performance

of all methodologies has a maximum for 3 neighbors,

and then performance sharply decreases. This means

that the decision boundary on the feature space is very

irregular and shows nonlinearity of the features.

Finally, in Fig.4 we show the accuracy, sensitivity

and specificity of the methodologies in their best set up.

Here we conclude that 2D-PCA and 2D-LDA have the

best performance with best accuracy and sensitivity and

least variation. Diagonal 2D-PCA has similar median

values, nevertheless its dispersion is higher. PCA has the

worst performance of the discussed methods. In general,

we see that the overall values of sensitivity are higher

than the overall values of specificity. This means that

in general, the methodologies explain better the fea-

tures corresponding to murmurs than the normal heart

sounds. This can be attributed to the larger variability

contained on heart murmur records.

IV. CONCLUSIONS

In this work several methodologies of dimensional-

ity reduction in TFR were compared. The proposed

methods proven be useful in dimensionality reduction,

given that the dimension of the original data is reduced

in a factor lower than 2.5%. The difference among

methodologies is how data is represented. Classifica-

tion is improved by taking into account variability in

time and frequency axes in the dimensionality reduction

schemes. Also, the performance is improved when a

discrimination restriction is posed on PCA, in this case,

when the variability within TFR is preserved while the

variability among TFR is maximized. As a future work,

the proposed methodologies of object representation will

be applied in more refined algorithms of data projection

for dimension reduction so that information of labels can

be used to improve accuracy of classification.
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