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Abstract— In the mean square error sense, principal component
analysis (PCA) or Karhunen-Loeve transform (KLT) can optimally
summarize the high dimensional data into only a few meaningful ones.
However, for the biomedical signal analysis, e.g. electroencephalogram
(EEG), the data need to be updated or downdated very often. This
fact makes the PCA impractical to be employed, especially in real-time
signal analysis. In this paper, we propose the fast computational method
for approximating the PCA such that the new transform, called fast
PCA (fastPCA), can easily be updated and downdated. The fastPCA is
calculated via the UTV decomposition which is the method normally
used to approximate the rank-revealing property of the singular value
decomposition (SVD). The merit of the fastPCA is also illustrated via
the application on EEG analysis.

I. INTRODUCTION

Many applications in biomedical signal processing normally
employ the principal component analysis (PCA) or Kahunen-
Loeve transform (KLT) since it can optimally summarize the
high dimensional data into only a few important coefficients. The
applications include EEG or ECG compression, feature extraction
via eigen analysis, data reduction, etc. However, for the online
analysis of biomedical signals, e.g. electroencephalogram (EEG),
electrocardiogram (ECG), electromyogram(EMG), the data need to
be updated or downdated very often. This fact makes the PCA
impractical to use in the real-time analysis.

There are many methods used for calculating the PCA [1].
One of the widely used methods is calculating the PCA via the
singular value decomposition (SVD). The SVD is the classical
matrix decomposition normally used for obtaining rank of a matrix
[2]. However, in real time applications, new data have to be
updated/downdated. Since the SVD requires high computational
complexity on updating/downdating its eigenvectors and eigenval-
ues, other decompositions which can eliminate this disadvantages
need to be investigated. In [3] and [4], a more efficient rank-
revealing decomposition when data need to be updated/downdated
called UTV decomposition is introduced. The UTV decomposition
decomposes a matrix into the product of orthogonal matrices and
the upper or lower triangular matrix. If the upper triangular matrix
is used, the decomposition is called URV. In addition, the UTV
decomposition is called ULV when the lower triangular matrix
is used. Since the UTV decomposition needs only the upper or
lower triangular matrix instead of the diagonal matrix in the SVD,
updating/downdating algorithms consume only O(n2) operations
instead of O(n3) operations. Even though the UTV decomposition
has been introduced for many years, nobody fully exploits the
properties of this decomposition to calculate the PCA.

In this paper, we estimate the PCA matrix by employing the
UTV decomposition. Since the UTV decomposition can efficiently
reveal the rank of the matrix as well as the SVD, we can similarly
derive the PCA matrix based on this decomposition rendering our
proposed transform called fast PCA (fastPCA). The merit of the
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fastPCA is evaluated via the EEG analysis, e.g. summarizing the
principal frequencies of the multichannel EEG [5].

II. CALCULATION OF THE PCA

Principal component analysis (PCA) or Karhunen-Loeve trans-
form (KLT) is the transform that maps a real random vector x =
(x0, x1, . . . , xm−1)

T to a random vector y = (y0, y1, . . . , ym−1)
T

such that y is completely decorrelated. In particular, if ΦT is the
matrix representation of the PCA, then y = ΦT x and

E
{
yyT

}
= E

{
ΦT xxT Φ

}
= ΦT E

{
xxT

}
Φ = ΦT RΦ = Λ,

where the columns of Φ are the normalized eigenvectors of R =
E

{
xxT

}
= ΦΛΦT , Λ is the diagonal matrix of the eigenvalues

with respect to Φ and T denotes the transpose operation. It can
also be proved that the PCA yields optimal energy compaction, i.e.
minimizing the entropy [6]. Therefore, the transformed vector y is
widely used in data compression.

III. UTV DECOMPOSITION

Suppose that Am×n has rank close to k. That is the singular
values of Am×n satisfy

σ1 ≥ . . . ≥ σk >> σk+1 . . . ≥ σn. (1)

There exist orthonormal matrices U and V such that

A = UTVT , (2)

where

1) T =

[
S C
Z E
0 0

]
,

2) S is the upper/lower triangular matrix of the size k × k,
3) E is the upper/lower triangular matrix of the size (n − k) ×

(n − k),
4) if S and E are upper triangular matrices, Z is zeros matrix,

and
√

‖C‖2 + ‖E‖2 ∼=
√

σ2
k+1 + . . . + σ2

n, UTV is called
URV,

5) if S and E are lower triangular matrices, C is zeros matrix,
and

√
‖Z‖2 + ‖E‖2 ∼=

√
σ2

k+1 + . . . + σ2
n, UTV is called

ULV.

By peeling of the large singular values of A once at a time, we
can obtain the rank-revealing triangular matrix T. Consequently,
matrices U and V can also be obtained via the givens transforma-
tions resulting from each step that we estimate the singular vector
[4].

According to the standard perturbation theory [2], the rank-
revealing performance of the UTV decomposition will approach the
SVD if the norm of the off-diagonal elements of T approach zero.
Specifically, since U and V are orthonormal matrices, Equation
(2) is actually the SVD when S and E are diagonal matrices, and
C and Z are zero matrices (matrices that all of their elements are
zeros). This is a very important property of the UTV decomposition
because, as the UTV decomposition preserves the similar property
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as the SVD, the computational load is reduced. The flop (floating-
point operations, i.e. additions and multiplications) count for com-
puting the UTV decomposition is 4m2k + 4mnkp + 8mnk while
the flop count for computing the SVD (using Golub-Reinsch SVD
algorithm [2]) is 4m2n + 8mn2 + 9n3. It should be noted that the
UTV decomposition is faster than the SVD when n/k ≥ (p+4)/3,
where the integer p is the average number of either power (or
Lanczos iterations per deflation step) [7]. More importantly, the
updated/downdated algorithms of the UTV decomposition can be
done only with O(n2) operators instead of O(n3) of the SVD [7],
[8].

IV. FASTPCA

A. Calculation of the PCA via UTV decomposition

Similar to the SVD, suppose that A is the matrix of the size
m × n, where ai denotes its corresponding i-th column. The
autocorrelation matrix, R, of A can be approximated as R =
1
n
AAT . According to Sections II and III, A can be decomposed

as A = UTVT . Since ΦΛΦT = R = 1
n
AAT and V is

orthonormal, i.e. VT V = I,

ΦΛΦT =
1

n
UTVT VTT UT =

1

n
UTTT UT .

If TTT is close to a diagonal matrix, we can approximate Λ ≈
1
n
TTT and hence Φ ≈ U. In other words, the PCA matrix of the

fastPCA can be approximately calculated by employing the matrix
U of the UTV decomposition. Hence, the fastPCA-transformed
vector y of a random vector x can be defined as y = UT x.

B. Performance Analysis of fastPCA

The mathematical performance of the proposed fastPCA can be
analyzed as follows:

Theorem 1: If TTT is diagonal, then Φ spans the same space
as U.

Proof : According to the SVD, A = UsΣVs
T , we can easily

show that Λ = 1
N

Σ2 and Φ = Us. Now, let T be the upper
triangular matrix. Suppose that TTT is diagonal, according to (2),
the off-diagonal elements C and E are equal to zeros. According
to [4], bound of the subspace distance (dist) between the SVD and
UTV is given as

dist(�(U),�(Us)) ≤ ‖C‖2 ‖E‖2

σmin(S)2 − ‖E‖2
2

, (3)

where �(U) and �(Us) denote the column spaces (ranges) of the
matrices U and Us, respectively. σmin(S) denotes the minimum
diagonal element of S in (2). That is the right hand side of (3) is
zero, hence U and Us span the same space. Similarly, the same
conclusion can also be proved when T is the lower triangular
matrix.

V. APPLICATION ON EEG ANALYSIS

The fastPCA could be efficiently used in applications such
as real-time EEG (or ECG) compression and analysis, feature
extraction via eigen analysis, data reduction, etc. In this paper,
we demonstrate the usefulness of the fastPCA by analyzing the
frequency of the bases derived from the ensemble of each EEG
channel.

200 400 600 800 1000 1200 1400 1600 1800

Fig. 1. Original 25-channel EEG contaminated by eyeblink artifacts
(channels 1 to 25 arrange from bottom to top, respectively); y-axis denotes
the sample numbers

A. Data Acquisition

The fastPCA is applied to real EEG measurements. The database
of EEGs contaminated by the eyeblink artifacts is provided by the
School of Psychology, Cardiff University, UK. The scalp 25-channel
EEG was obtained using Silver/Silver-Chloride electrodes placed
at locations defined by the 10-20 system [9]. The 8-second of 25-
channel EEG was sampled at 200 Hz (1,600 samples/channel), and
bandpass filtered with cut-off frequencies of 2 Hz and 30 Hz.

B. Simulation Results

According to [5], we can simultaneously summarize the fre-
quency information of the 25-channel EEG by calculating its fast
Fourier transform (FFT) or power spectral density (PSD) of their
bases (each column of the PCA (or KLT) matrix ΦT calculated as
in II). In this section, we select two sets of data in Fig.1 to evaluate
the merit of the fastPCA. The first dataset (called Data1) is selected
from sample numbers 301 to 500 and the second dataset (called
Data2) is selected from sample numbers 401 to 600. That is the
matrix A to be decomposed by the SVD and UTV decomposition
is of the size 200 × 25. It is clear that Data1 is selected to avoid
the eyeblink artifact while there is one eyeblink artifact appeared in
Data2. Fig. 2 illustrates the estimated singular values and singular
values of the UTV decomposition and SVD, respectively, of both
Data1 (Fig. 2(a)) and Data2 Fig. 2(b). This implies that both Data
can be optimally represented (in the mean square error sense) by
employing approximately 4-5 bases. In order to summarize the
frequency of the 25-channel EEG, we take the FFT of each column
vector of matrix U of the UTV decomposition compare with each
corresponding column vector of matrix Us of the SVD. Figs.3 and
4 show that the fastPCA can efficiently summarize the contribution
of each frequency band in both multichannel EEGs from Data1 and
Data2 as well as the traditional PCA. In Figs. 3(a) and (d), both
the fastPCA and PCA result in basis which can represent the trend
of the multichannel EEG at the frequency around 2 Hz. Figs. 3(b)
and (e) show that both the fastPCA and PCA result in the basis
which can represent alpha activities around 9-13 Hz. Figs. 3(c) and
(f) demonstrate the similar results of both the fastPCA and PCA
which can reveal the beta activities around 12-18 Hz. Similarly,
the same result can be obtained in Fig. 4 except that Figs. 4(a)
and (d) reveal the eyeblink artifact together with the trend of the
multichannel EEG at the frequency around 2-4 Hz.
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Fig. 2. Estimated singular values and singular values of the UTV
decomposition and SVD of (a) Data1 and (b) Data2.

Fig.5 demonstrates that the absolute PCA-transformed coeffi-
cients calculated via the fastPCA can efficiently approximate the
traditional PCA calculated using the SVD. For better visualization,
24 out of 200 samples of the PCA-transformed coefficients of the
first channel are depicted in Fig.5. Both Data1 (Fig.5(a)) and Data2
(Fig.5(b)) result in the same trend of the energy compaction except
that the EEG from Data1 seems to be smoother than Data2, hence,
the energies decay faster.

Since we only use 200 samples for each channel of the EEG,
computational load on calculating the SVD seems to be acceptable.
However, if we would like to continuously include or exclude some
data (e.g. continuously update the data in real time application, or
in the case that we would like to update some more data from
200 samples to 300 samples and so on to 1,800 samples, or we
would like to downdate some old data and update some new data),
fastPCA can obviously outperform the traditional PCA in the sense
of computational complexity (see Section III)

VI. CONCLUSION

This paper has presented the new method to compute the PCA-
transform matrix via the UTV decomposition. The proposed method
called fastPCA can efficiently update and downdate the PCA-
transform matrix with lower complexity than the traditional PCA
calculated via the SVD. The mathematical performance analysis
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Fig. 5. The absolute values of the PCA-transformed coefficients calculated
by the UTV decompostion and SVD of (a) Data1 and (b) Data2.

of the fastPCA has also been illustrated. The fastPCA has been
applied to simultaneously analyze the frequency information of the
multichannel EEG.
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Fig. 3. FFT of (a) the 1-st column, (b) the 2-nd column and (c) the 3-rd column of U calculated from the UTV decomposition of Data1; FFT of (c) the
1-st column, (d) the 2-nd column and (e) the 3-rd column of Us calculated from the SVD of Data1.
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Fig. 4. FFT of (a) the 1-st column, (b) the 2-nd column and (c) the 3-rd column of U calculated from the UTV decomposition of Data2; FFT of (c) the
1-st column, (d) the 2-nd column and (e) the 3-rd column of Us calculated from the SVD of Data2.
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