
  

    

Abstract—Ambient Assisted Living (AAL) technology is often 

proposed as a way to tackle the increasing cost of healthcare 

caused by population aging.  However, the sensing technology 

for continuous respiratory monitoring at home is lacking. 

Known approaches of respiratory monitoring are based on 

measuring either respiratory effect, e.g. tracheal sound 

recording by a bio-acoustic sensor, or respiratory effort, e.g. 

abdomen movement measurement by a tri-axial accelerometer. 

This paper proposes a home respiration monitoring system using 

a tri-axial accelerometer. Three different methods to extract a 

single respiratory signal from the tri-axial data are proposed 

and analyzed. The performance of the methods is evaluated for 

various possible respiration conditions, defined by the sensor 

orientation and respiration-induced abdomen movement. The 

method based on Principal Component Analysis (PCA) performs 

better than selecting the best axis. The analytical approach 

called Full Angle shows worse results than the best axis when the 

gravity vector is close to one of the sensor’s axes (<15 degrees). 

Hybrid-PCA, which is a combination of both methods, performs 

comparable to PCA. The system is evaluated using simulated 

data from the most common postures, such as lying and sitting, 

as well as real data collected from five subjects. The results show 

that the system can successfully reconstruct the 

respiration-induced movement, which is necessary to determine 

the respiratory rate accurately.   

I. INTRODUCTION 

 HE respiration is one of the most important vital signs. 

However, sensing technology for automated respiration 

monitoring is still lacking for ambient assisted living. 

Respiration monitoring is mostly based on two different 

principles: the measurement of respiratory effort (e.g. thoracic 

impedance pneumography, accelerometers, photoplethys- 

mography [1]-[4]) and respiratory effect (e.g. sound recording, 

temperature sensing, carbon dioxide sensing [5]-[7]). Some 

sensors have already been used to monitor respiration in other 

applications. In intensive care units (ICU), thoracic 

impedance pneumography is considered the “gold standard” 

for respiration monitoring, whereas in sleep studies, inductive 
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plethysmography, often referred to as respiration band, is 

commonly used [8]. 

   A tri-axial accelerometer is a device that measures the 

acceleration in three orthogonal directions (sensing axes). An 

accelerometer can be used to sense vibrations, e.g. the 

vibration of a machine [9], orientation, e.g. in human activities 

monitoring [10] and the inertia, e.g. used in a video game 

controller [11].  

   In this paper a tri-axial accelerometer for respiratory 

monitoring is proposed because it is a promising approach to 

achieve comfortable, low cost, continuous and ambulatory 

monitoring. The tri-axial accelerometer is used as an 

inclinometer to reflect the abdomen or chest movement 

caused by respiration based on the fact that the magnitude of 

the inertial acceleration is relatively small compared to the 

change of gravitational components [12]. Several researchers 

have adopted this sensing technique in respiratory monitoring 

[13],[14]. However, this technique requires reliable signal 

processing methods to enable continuous monitoring under 

different conditions and postures. 

     This paper proposes a posture-independent tri-axial 

accelerometer-based respiration monitoring system and 

evaluates its performance using both simulated and real 

subject data.  

II. SENSOR PLACEMENT 

    Since the tri-axial accelerometer is used as an inclinometer, 

the accelerometer should be placed on the area where the 

sensor orientation changes during the respiratory movement. 

The most important muscle involved in respiration is the 

diaphragm, the dome-shaped skeletal muscle that forms the 

floor of the thoracic cavity [15].  Therefore, the accelerometer 

is placed roughly at the position of the diaphragm muscle 

below the xiphoid process (at the lower end of the sternum). 

III. SIGNAL PROCESSING DIAGRAM 

A signal processing module extracts the respiratory rate 

from the measured acceleration data. The block diagram of the 

signal processing part is presented in Fig.1.  

    The raw signal is first collected by the data acquisition 

module and fed into the pre-processing block. Preprocessing 

includes signal conditioning, segmentation and band-pass 

filtering. Artifacts, such as speech, motion and eating, are 

detected and removed by pattern classification methods after 

preprocessing. An essential step before respiratory rate 

extraction is axes fusion, which aims at reconstructing the 
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original respiration-induced movement signal from the 

tri-axial signals, given a posture and sensor orientation. In the 

final step, the respiratory rate is simply calculated by either 

peak detection in time-domain or taking the fundamental 

frequency of the reconstructed signal in frequency domain 

when the reconstructed signal is artifacts free. The focus of 

this paper is mainly on investigation of the possible axes 

fusion methods. 
 

 

IV. MODEL AND METHODS 

    Due to the nature of the accelerometer signal, the 

respiratory signal quality depends not only on respiratory 

effort but also on body posture and the sensor orientation. It is 

thus necessary to introduce the mathematical model which 

shows how the respiration-induced movement projects on the 

three sensor axes.  

 

 
In the sensor coordinates system, the respiration-induced 

movement can be represented as the gravity vector G moving 

around a nominal position in a plane with the maximum angle 

span θ∆ on either side of the nominal position. The resulting 

projection of the movement onto three axes is determined by 

the orientation of the sensor coordinates system and the 

orientation of the moving plane defined by OG’G’’ in Fig.2. 

These two orientations are defined by three variables: γ, the 

angle between the nominal position of G and z axis; ζ, the 

angle between the y axis and the projection of G onto x-y 

plane; ξ, the angle between z axis and its projection in the 

moving plane. The geometric model in Fig.2 with these four 

parameters describes how the respiration-induced movement 

projects on the measured tri-axial signals. 

The axes fusion block reconstructs the respiration-induced 

movement based on measured tri-axial signals, as illustrated 

in Fig.3. Three methods are investigated for this block: 

 

1. Analytical Approach (referred to as Full Angle)  

2. Principal Component Analysis (PCA) 

3. Hybrid PCA, the combination of methods 1 and 2. 

     

    Full Angle is an analytical approach explicitly making use 

of sensor orientation information to reconstruct the breathing 

movement signal based on the model in Fig.2. Full Angle 

consists of two steps. First, the projection of 

respiration-induced movement is maximized in each 

two-dimensional subspace using the DC component and the 

magnitude of the signal on each axis. In the second step, the 

respiration-induced movement is reconstructed by calculating 

vector magnitude of the maximized projection in each 

two-dimensional subspace.  

    Axes fusion can be also considered as a dimension 

reduction problem. PCA is a common method used in 

dimension reduction. It mathematically rotates the sensor 

coordinate system to such an orientation that one axis 

accounts for the largest variance (power) in the data.    

    Hybrid PCA combines both methods by replacing the 

second step of Full Angle by PCA.  

 

 

V. PERFORMANCE EVALUATION 

A. Overall Evaluation with Simulated Data 

By varying the four parameters of the model in Fig.2, it is 

possible to generate a set of simulated signals that covers all 

possible conditions. For the accelerometer used in our system, 

the noise level is close to -30 dB within the relevant frequency 

band up to 3 Hz on each axis with respect to the gravity. In the 

simulation, noise of the same level is added on each axis. The 

performance is measured by the relative Signal-to-Noise Ratio 

(rSNR) of the data defined after axes fusion with respect to the 

data of the axis with highest SNR. Equation 1 gives the 

definition of the SNR and relative SNR, 

 

                10 log
signal

AxesFusion
noise

AxesFusion BestAxis

Power
SNR

Power

rSNR SNR SNR

= ⋅

= −

     (1) 

 

where Powersignal is defined as the square of the peak height on 

the breathing rate in the frequency spectrum and Powernoise is 

defined as the square of the average noise floor. 

Three methods for axes fusion are evaluated using the same 

measure. In Fig.4, the simulation results show that PCA and 

Hybrid PCA always perform better than selecting the best axis. 

The best rSNR for both PCA methods can be as high as 5 dB 

(Fig.4). The overall performances of the two methods are 

comparable. Full Angle mostly performs better than selecting 

the best axis with rSNR gain close to 5dB, except when the 

nominal orientation of the gravity is close to one axis (<15 ° ), 

as shown in the top plot of Fig.4. The reason for this is that, if 

 
Fig.3. The simulated respiratory effort information (left figure), its 

projection onto the three axes of the accelerometer (mid figure), and 

reconstructed respiratory effort information by axes fusion (right figure).  

 

 
Fig.2. Orientation of the gravity at its nominal position and its moving 

plane defined in the sensor coordinates.    
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Fig.1. Diagram of the signal processing module. 
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the gravity is close to one of the three axes, the breathing 

information is weak on that axis, which has thus lower SNR. 

In this case, the Full Angle method can increase the noise level 

due to the non-linear calculation of the vector magnitude in 

the second step of Full Angle. On the contrary, PCA employs 

linear calculation, which avoids increasing noise. However, 

PCA implicitly assumes that the DC component of the signal 

on each axis resembles the sensor orientation, which is not 

accurate especially when the angle span θ∆ becomes large. 

Since Full Angle explicitly calculates sensor orientation, the 

idea of Hybrid PCA is to combine the advantages of both.   

    

 

B. Performance Evaluation with Practical Conditions 

    Assuming an initial mounting position of the sensor and 

given no relative movement of the sensor with respect to the 

body,  there is a limited range of values for a combination of 

four angles, as defined before,  which occur in real life. In 

order to evaluate the performance of the system in practical 

conditions, seven common postures that a subject may assume 

are selected (Table 1). The parameters are empirically 

determined. The noise level is set to -30 dB.  

Based on the model in Fig.2, it is possible to generate the 

simulated signals with the parameters given in Table 1. Fig.5 

shows the simulated signal of three axes under seven postures 

that are plotted consecutively. These simulated raw signals are 

fed into the axes fusion block and the output is evaluated by 

calculating the relative SNR for each method. 

 
TABLE I 

PARAMETERS FOR SEVEN COMMON POSTURES 

Postures  θ∆       γ      ζ      ξ 
1.Standing 3 °  86 °  5 °  5 °  
2.Sitting 3 °  77 °  5 °  5 °  

3.Lean45 °Back 3 °  47 °  5 °  5 °  

4.Lean30 °  Left 2.5 °  86 °  35 °  35 °  
5.L45B & L30L 2.5 °  57 °  35 °  35 °  
6.Lying Supine 3 °  5 °  5 °  4 °  
7.Lying Aside 0.5 °  86 °  70 °  80 °  

L45B&L30L = lean 45 degrees back & lean 30 degrees to left 

 

    It can be seen in Fig.6 that Hybrid PCA and PCA perform 

better than selecting the best axis at all seven postures. Full 

Angle mostly performs comparable to or worse than selecting 

the best axis for most postures, especially for sitting and 

standing. This is because the orientation of the gravity vector 

in the sensor coordinates is close to one axis for these postures. 

The performance is thus affected by this noisy axis.  

      

        

C. Evaluation with Real Subject Data  

In order to test the system performance in real environment, 

human testing is arranged to collect the data. Five subjects 
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Fig.6. Performance of the system with different signal processing 

approaches with simulated signal.  

 

 

 
 

Fig.4. The simulation result of Full Angle, PCA and Hybrid PCA 

approach with θ∆ = 1.8 degrees.  
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Fig.5. The simulated signals of seven postures, which are represented 

as seven segments in the plot.       
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participated in the test continuously for one hour per person. 

The accelerometer is connected to a data-acquisition module. 

The sampling frequency is 10 Hz. The measurement range is 

± 2g. The data is processed offline using MATLAB
®
 (The 

Mathworks Inc., MA, US).  

In this study, the data segments that do not contain the 

artifacts were manually selected from this five-hour data. 

Three approaches are all tested with these segments of data. 

The test shows that the system is able to recover the 

respiratory effort information when subjects are in different 

postures and the sensor is mounted in different orientations. 

Fig.7 shows an example of raw signals and reconstructed 

movement using the three methods. 

 rSNR is calculated in order to compare the performance. 

The results are in good agreement with those from simulated 

data. As an example, Fig.8 shows the performance evaluation 

of a five minute segment of data. Performance of Hybrid PCA 

is comparable with that of PCA and Full Angle performs 

worse. 

Moreover, Hybrid PCA aims to combine the advantages of 

PCA and Full Angle. In theory, the larger ∆θ becomes the 

higher the gain Hybrid PCA has over PCA. However, real 

respiratory data shows that amplitude of ∆θ in most cases is 

less than 3º. Hence, the gain over PCA for this application is 

limited. 

 

 

VI. CONCLUSION 

A well-placed tri-axial accelerometer can be used to 

monitor respiratory effort for ambient assisted living. Three 

different approaches (Full Angle, PCA and Hybrid PCA) are 

evaluated with both simulated signals and real subject data. 

Both PCA-related methods perform better than selecting the 

best axis, independent of postures and sensor mounting 

orientation. However, Full Angle performs worse than 

selecting the best axis in the case when the nominal orientation 

of the gravity is close to one axis.  
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Fig.7. System evaluation with real data; the first three waveforms are 

raw accelerometer signals of three axes. The bottom three waveforms 

are the output of the axes fusion block using three different methods.  
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Fig.8. Performance of the system in real data testing with one 

segment of patient data. Horizontal axis is the time index; each index 

unit represents a one minute segment. Vertical axis gives the 

corresponding relative SNR.  
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