
 

Abstract—Numerous methods have been reported for deriving 

respiratory information such as respiratory rate from the 

electrocardiogram (ECG).  In this paper the authors present a 

real-time algorithm for estimation and removal of baseline 

wander (BW) noise and obtaining the ECG-derived respiration 

(EDR) signal for estimation of a patient’s respiratory rate.  

This algorithm utilizes a real-time “T-P knot” baseline wander 

removal technique which is based on the repetitive backward 

subtraction of the estimated baseline from the ECG signal.  The 

estimated baseline is interpolated from the ECG signal at 

midpoints between each detected R-wave.  As each segment of 

the estimated baseline signal is subtracted from the ECG, a 

“flattened” ECG signal is produced for which the amplitude of 

each R-wave is analyzed.  The respiration signal is estimated 

from the amplitude modulation of R-waves caused by 

breathing. Testing of the algorithm was conducted in a pseudo 

real-time environment using MATLABTM, and test results are 

presented for simultaneously recorded ECG and respiration 

recordings from the PhysioNet/PhysioBank Fantasia database.  

Test data from patients were chosen with particularly large 

baseline wander components to ensure the reliability of the 

algorithm under adverse ECG recording conditions.  The 

algorithm yielded EDR signals with a respiration rate of 4.4 

breaths/min. for Fantasia patient record f2y10 and 10.1 

breaths/min. for Fantasia patient record f2y06. These were in 

good agreement with the simultaneously recorded respiration 

data provided in the Fantasia database thus confirming the 

efficacy of the algorithm. 

I. INTRODUCTION

ANY investigators have pursued the derivation of a 

patient’s respiratory signal by digital signal 

processing of the electrocardiogram (ECG). Such a 

respiration signal obtained from the ECG is called the ECG-

derived respiration (EDR) signal and several clinical 

significances of the EDR signal have been reported [1].  

Several methods have been reported for deriving the EDR 

signal.  Respirations induce apparent modulation in the 

direction of the mean cardiac electrical axis (MEA) and 

investigators have reported algorithms for producing the 

EDR signal from approximations of this modulation [2]. 

Other reported methods derive the EDR from very complex 

algorithms requiring ECG signals simultaneously recorded 
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from multiple lead connections [3-5]. Still other reported 

approaches are based on complex mathematical transforms 

and non-real-time ECG data to derive the EDR signal [6-8]. 

These previously reported methods for EDR derivation 

are typically very computationally intensive, performed off-

line (non-real-time environment) and some require 

simultaneous recording of multi-lead ECG signals. 

Moreover, the accuracy and reliability of these techniques 

has been somewhat limited as reported. Highly desirable is a 

reliable technique for deriving the EDR signal from a single 

conventional lead recording in real-time. The authors 

recently presented a real-time algorithm for deriving the 

EDR signal from analysis of real-time detected ECG R-wave 

amplitude analysis [9-10]. In this paper the authors describe 

the algorithm and its testing in a pseudo real-time 

environment using MatlabTM (Mathworks, Inc., Natick, 

MA).  New results are reported from testing with 

simultaneously recorded ECG and respiratory records of 

publicly available patient data from the PhysioNet/ 

PhysioBank Fantasia database.

II. METHODS

The focus of this work was on deriving the EDR signal 

from an accurate estimation of the amplitude modulation of 

ECG R-waves caused by respiratory movement of the 

thorax.  Success requires accurate beat-to-beat estimation of 

ECG R-wave amplitudes. Since ECG signals frequently 

contain noise, careful consideration must be given to noise 

removal, especially baseline wander, in order to extract 

accurate R-wave amplitude measurements.  

Assume that R(t) is the composite amplitude of a detected 

ECG R-wave, which can be described in terms of its signal 

components as: 

)t(b)t(n)t(n)t(nr)t(a)t(R GH1 !!!!"#   (1)  

where R(t) is the composite ECG R-wave amplitude; a(t) is 

the amplitude modulation due to respiratory movement of 

the thorax; r is the true R-wave amplitude at the middle of a 

resting tidal volume breath (r = constant); n1(t) is narrow 

band noise due to 60 Hz, etc.; nH(t) is other high frequency 

noise due to EMI, EMG, noise artifacts, etc.; nG(t) is zero-

mean Gaussian white noise; and b(t) is the baseline offset 

and wander noise. 

The desire is to find an estimate of a(t) to approximate the 

respiratory waveform. After conventional lowpass filtering 

to remove nH(t), notch filtering to remove n1(t), and baseline 

removal to remove b(t), then for the ith detected R-wave, 

equation (1) can be simplified to: 
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Further assume that a(t) has unity mean value, which is 

equivalent to saying that at the middle of a resting tidal 

volume breath, there is no respiratory influence on the R-

wave amplitude (i.e., a(t) $ 1); and during normal respira-

tions, the amplitude modulation factor has a value that is 

symmetric about this unity value.  Following the capture of 

every detected R-wave from the filtered ECG waveform,  

the desire is to compute the running average of the R-wave 

amplitude in equation (2). Then, it can be shown that the 

average detected R-wave amplitude for large n (i.e., large 

number of detected R-wave amplitudes) can be 

approximated by: 

)t(R

)t(R
)t(a

n

n
n %    (3) 

where )t(Rn is the running average R-wave amplitude [9].  

Therefore, an algorithm for approximating the respiratory 

waveform, a(t), is: 

1. lowpass and notch filter the ECG waveform to remove 

the 60 Hz and other high frequency noises 

2. remove the baseline offset and wander, b(t) 

3. as each ith R-wave is detected,

a. compute the amplitude, Ri(t)

b. compute a running average of the current and all 

previous R-wave amplitudes, )t(Rn

c. estimate most recent an(t) value from equation (6) 

d. compute the running interpolation of an(t), which is 

the desired EDR signal. The accuracy of an(t)

improves with increasing i.  

Step 2 of the algorithm requires removal of the baseline 

wander (BW) noise.  The authors used the real-time T-P 

knot algorithm for estimation and removal of the BW noise 

as reported in [10].  Removal of baseline wander is 

necessary for accurate estimation of R-wave amplitudes 

(i.e., the baseline must be “flat”).  The baseline wander 

estimation from the T-P algorithm is based on a moving 

cubic spline interpolation of the four most recently 

determined R-R midpoints (i.e., the ECG signal amplitude at 

the location midway between successive R-waves, or “T-P 

knots”).  As each new R-wave is detected, a cubic spline 

interpolation of the four most recent T-P knots is performed 

to estimate a new segment of the BW noise, which is then 

backward subtracted from the ECG signal.  Fig. 1 shows a 

segment of ECG signal with the T-P knots identified as 

filled circles. 

Fig. 2 illustrates the signal processing steps used to 

implement the EDR algorithm. The upper portion of the 

diagram is for producing a cleaned and flattened (i.e., 

baseline removed) ECG signal by pre-filtering which 

includes a 60 Hz 2nd-order IIR notch filter (Q=14) and a 2nd-

order Butterworth lowpass filter to substantially reduce 60 

Hz noise, motion artifacts, EMG noise etc.  The lower 

portion is used to analyze this cleaned ECG signal and 

detect each R-wave location and amplitude for estimating 

an(t) from equation (3). The Pan & Tompkins R-wave 

detection algorithm is employed to obtain the proximity of 

each QRS complex [11]. This information is used for 

approximating the baseline signal, b(t), using the T-P knot 

interpolation technique. The approximated baseline signal is 

then subtracted from the clean ECG signal still containing 

baseline wander, resulting in a clean and flattened ECG 

signal that is next ready for R-wave analysis as required in 

equations (1)-(3).

Fig. 1.  ECG segment showing T-P knots as filled circles. 

Fig. 2: Block diagram of the EDR algorithm. 

The peak amplitude and location of each R-wave of the 

clean ECG signal are next detected.  A running average of 

these R-wave amplitudes is computed and the ratio of the 

current R-wave peak value to the current running average 

value yields the desired estimation of the respiratory 

amplitude modulation factor, a(t), from equation (3). A final 

cubic spline interpolation of preceding respiratory 

modulation factor amplitudes (at their corresponding R-

wave peak locations) yields a continuous approximation for 

the EDR signal. Since a 3rd-order interpolation polynomial is 

used for this purpose, four values of the modulation factor 

must be produced before the estimated EDR signal can be 

produced.  A final 3rd-order elliptic smoothing filter is used 

to reduce high frequency noise in the EDR.  As the 

respiration signal has a very low frequency (less than 0.5 

Hz), the smoothing filter and final interpolation of the EDR 

signal are performed at a 1:100 down-sampled sampling rate 

(i.e., 2.5 Hz for an ECG sampling rate of 250 Hz). 
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MATLABTM was used for simulating a real-time DSP 

environment using pseudo real-time code within a single 

virtual A/D sampling loop to process the digitized signal at a 

sampling rate of 250 Hz. Portions of the T-P knot algorithm 

were written to emulate serial shift registers performing 

block operations with data from four R-R intervals.  

III. RESULTS

Testing of the EDR algorithm was accomplished using 

simultaneously recorded patient ECG and respiration data 

from PhysioNet/PhysioBank [12]. Actual recordings were 

downloaded from the Fantasia data set.  Each set includes 

simultaneously sampled (250 Hz) and recorded ECG and 

respiration belt data from 20 young and 20 elderly subjects 

[13].  The authors selected challenging excerpts from data 

files f2y10 (Start time = 20 s; End time = 80 s) and f2o06 

(Start time = 60 s; End time = 120 s) for testing the 

algorithm.  Fig. 3 shows the noisy ECG signal (upper) and 

simultaneously recorded respiratory belt signal (lower) from 

the f2o06 data file.  The ECG data show significant baseline 

wander and rapid motion artifact noise.  The authors 

selected the f2o06 and f2y10 data records to provide a good 

test for the efficacy of the EDR algorithm. 

Fig. 3. Original noisy f2o06 ECG data (upper) and respiratory belt signal 

(lower). 

Fig. 4 shows the “flattened” f2o06 ECG data after filtering 

and removal of the BW noise with the authors’ algorithm 

and Fig. 5 shows the resulting EDR signal. 

Fig. 4. F2o06 ECG data after filtering and BW noise removal. 

   

Fig. 5. EDR signal for the f2o06 data. 

Figures 6 and 7 show the original respiratory belt and 

resulting EDR signals respectively for the f2y10 excerpt.

Fig. 6. Original respiratory belt data for the f2y10 data excerpt. 
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Fig 7. EDR signal for the f2y10 data. 

IV. DISCUSSION

The respiratory belt waveform of Fig. 6 and the resulting 

EDR signal in Fig. 7 show similar respiration rates. The 

figures show a phase lag of approximately 4 seconds for the 

EDR signal as compared to the original respiratory belt 

waveform.  This can be attributed to the phase lag 

introduced by the 3rd-order elliptic smoothing filter. Both 

figures show four prominent peaks and valleys with 

respiration rates of slightly more than four per minute. The 

authors did not consider this phase lag of great significance 

for purposes of monitoring respiratory rate.  

The respiratory belt waveform of Fig. 3 (lower) and the 

resulting EDR signal in Fig. 5 both show the same number 

of positive peaks in respiration for the f2o06 data excerpt.  

The f2o06 data segment was recorded from a subject with a 

higher respiration rate of approximately 10.0 Breaths/min 

(i.e., closer to normal adult resting respiration rate).  The 

authors’ algorithm produced an EDR signal with a 

respiration rate of 10.1 Breaths/min, agreeing well with the 

actual recorded respiration signal.  The results of testing 

with the two data sets are summarized in Table I. 

TABLE I. COMPARISON OF RESPIRATION RATES BETWEEN THE EDR

SIGNAL AND ACTUAL RESPIRATION RECORDINGS.

Data File 

Actual

Recording

(B/min) 

EDR

Estimate 

(B/min) 

f2o06 10.0 10.1 

f2y10  4.4  4.5 

IV. CONCLUSIONS

In this paper the authors presented a real-time algorithm 

for estimating and removing BW noise and obtaining the 

ECG-derived respiration (EDR) signal. This algorithm 

utilizes a real-time filtering and baseline wander removal 

technique which produces a cleaned “flattened” ECG signal 

for which the amplitude of each R-wave is analyzed.  The 

respiration signal is then estimated from the amplitude 

modulation of each detected R-wave caused by breathing.  

Testing of the algorithm was conducted in a pseudo real-

time environment using MATLABTM, and the test results 

were presented for simultaneously recorded ECG and 

respiration recordings from the PhysioNet/PhysioBank 

Fantasia data-base.  The test results proved to be good tests 

of the algorithm under extreme conditions of baseline 

wander noise and broad ranges of respiration rate.  The 

algorithm provided reasonably accurate estimates of 

respiration rate for both sets of data as illustrated in Table I 

and proved robust for all data sets tested including those 

with extreme baseline excursions and PVCs.  Of key 

importance for accuracy is the need for removal of baseline 

wander and other noise signals that impact R-Wave 

amplitude.  Since the algorithm depends on detection of 

respiratory induced R-wave amplitude modulation, shallow 

respirations (i.e., low amplitude modulation of the ECG 

signal) prove more challenging than deep respirations for 

reliable derivation of the EDR signal.  Another challenge 

noted by the authors was the need to vary the cutoff 

frequency of the final EDR smoothing filter depending on 

the respiratory rate.  An adaptive filter approach might prove 

to be more robust than the fixed parameter lowpass filter 

used by the authors.  More investigation is also required for 

comparing the results of this algorithm with other 

approaches.  However, a challenge is the lack of published 

results using publically available simultaneously recorded 

ECG and respiration data. 
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