
Bayesian Auxiliary Particle Filters for Estimating Neural Tuning
Parameters

John Mountney, Marc Sobel, Iyad Obeid

Abstract— A common challenge in neural engineering is to
track the dynamic parameters of neural tuning functions.
This work introduces the application of Bayesian auxiliary
particle filters for this purpose. Based on Monte-Carlo filter-
ing, Bayesian auxiliary particle filters use adaptive methods
to model the prior densities of the state parameters being
tracked. The observations used are the neural firing times,
modeled here as a Poisson process, and the biological driving
signal. The Bayesian auxiliary particle filter was evaluated by
simultaneously tracking the three parameters of a hippocampal
place cell and compared to a stochastic state point process filter.
It is shown that Bayesian auxiliary particle filters are substan-
tially more accurate and robust than alternative methods of
state parameter estimation. The effects of time-averaging on
parameter estimation are also evaluated.

I. INTRODUCTION

Changes that occur in the organization and function of the
brain, especially in response to external factors, are referred
to as neural plasticity. Neural plasticity can be the result of
environmental changes, learning, normal experience or brain
injury. It has been shown that thinking, learning, and acting
actually change the brain’s functional anatomy if not also its
physical anatomy [1].

In order to decode and maintain an accurate estimate of
the intended biological signal from a dynamic neuron, the
evolution of a neuron’s parameters must be approximated.
Whenever there is a requirement to process signals that result
from operation in an environment of unknown statistics,
adaptive signal processing provides a means of tracking the
temporal evolution of system parameters. Adaptive filters
have been successfully applied in such diverse fields as
digital communications, digital control, radar and biomedical
engineering [2].

Traditionally, adaptive filtering algorithms update system
parameter estimates by recursively combining the previously
estimated system parameters with new information. This
new information is processed to minimize a cost function,
which is often a quadratic expression of the error, which
are appropriate for continuous-valued functions. Since neural
spike train data is a point process, approximating system
parameters with a quadratic cost function in the absence of
high firing rates is of limited applicability. Instead, it has been
recently shown that the instantaneous log-likelihood of neural
firing provides an appropriate cost function for adaptive

I. Obeid (iobeid@temple.edu) and J. Mountney (jmm@temple.edu) are
with the Department of Electrical & Computer Engineering, Temple Uni-
versity, Philadelphia, PA 19122

M. Sobel (marc.sobel@temple.edu) is with the Department of Statistics,
Temple University, Philadelphia, PA 19122

All authors contributed equally to this work.

filter algorithms for spike train model measurements, using
instantaneous steepest descent and stochastic state models
[3], [4].

An alternative to gradient-based approximations is the
solution based on Bayesian estimation. Given the previous
state xt−1 and the current observations y1, . . . , yt, recursive
Bayesian estimation uses a two-stage process to solve for
the posterior distribution p(xt|y1, . . . , yt). In the first stage,
Bayes rule is used to update the posterior from the previous
step. In the second stage, the current posterior is calculated
using this updated posterior. However, it is often prohibitive
to use this methodology since a closed form solution of the
integrals required for a Bayesian recursive filter does not
exist.

One specific class of Bayesian estimators is the particle
filter. Particle filters are used to estimate the current state
of a system xt using numerical simulation methods that
approximate the often difficult to solve integrals of the
recursive Bayesian estimation problem [5]. If the integrals
cannot be solved for analytically, Monte Carlo integration
can be used to provide discrete support to represent the
posterior probability as a set of randomly chosen weighted
samples or particles from a proposal density that is chosen
to approximate the posterior p(x|y). The particle samples are
assigned weights based on how likely they are to be drawn
from the current state posterior.

A limitation of particle filters is that the proposal densities
are static and hence unable to adapt to changing system
dynamics. This leads to degeneracy, in which most particles
yield no useful information, thereby negating the advantages
of the particle filter approach. Auxiliary particle filters,
introduced by Pitt and Shephard, address this limitation by
constructing proposal densities that better correspond to the
true posterior distribution [6]. An extended version of the
auxiliary particle filter was developed by Liu and West, in
which an additional hyper-parameter was added to better
adapt the proposal to the posterior [7].

The goal of this work is to apply the extended auxiliary
particle filter of Liu and West to track the state vector of a
dynamic place cell. It is shown that this parameter tracking
method is robust to periods of neural quiescence and is
generally more stable than existing methods.

II. PARAMETER TRACKING THEORY

A number of parameterized models of the form λt =
f(ut, xt) have been proposed for describing a neuron’s
instantaneous likelihood of firing. λt represents the instan-
taneous firing rate, ut represents the neuron’s driving signal

5705

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



(i.e. position, speed, reach angle, etc), and xt represents the
model’s time-varying parameters (i.e. state). The goal of this
work is to estimate the model state xt given the driving
signal ut and the observed neural firings Nt. For notational
simplicity, we combine the observed parameters into one
variable, yt = (Nt, ut), and introduce the abbreviation y1:t
for the vector (y1, . . . , yt).

A. Iterative Parameter Tracking

Estimating the model states xt from the observations y1:t
requires the computation of p(xt|y1:t) using Bayes rule:

p(xt|y1:t) =
p(y1:t|xt)p(xt)

p(y1:t)
(1)

The term p(y1:t|xt) is the likelihood of the neuron firing at
various values of the driving signal given the model state.
The term p(xt) refers to the prior density for the model
states, while the term p(y1:t) refers to the marginal density,
which is the probability of the observed measurements
averaged over all possible states.

In parameter tracking problems, (1) is often solved itera-
tively, since knowledge of the state at any given time affects
future model predictions. An iterative implementation of (1)
is formulated as follows:

p(xt|y1:t) ∝ p(xt−1|y1:t−1) · p(yt|xt)p(xt)
p(yt|y1:t−1)

(2)

which assumes that observations depend only on the current
model state.

B. Particle Filtering

Monte Carlo-style particle filtering is an implementation
of (2) that has been applied to neural tracking problems [8].
A series of states (particles) is simulated at each time t;
those states that best predict the observations are selectively
retained (resampled). Although state values can be simulated
directly from the prior p(xt), a more flexible method is to
simulate state values from a simpler proposal density, π, that
approximates the posterior at time t [5]. When simulating
values of p(yt|xt)p(xt) using values of xt taken from a
proposal density, those simulated values must be weighted
by the density of the proposal:

p(yt|xt)p(xt) ∼
p(yt|x(k)

t )p(x(k)
t )

π(x(k)
t |xt−1, yt, θ)

(3)

where the superscript (k) indexes the simulated state values
and θ is a hyper-parameter, which is commonly used to
support multi-level statistical models [5], [7]. Substituting
(3) into (2) results in the Sequential Importance Sampling
equation:

w
(k)
t ∝ w(k)

t−1

p(yt|x(k)
t )p(x(k)

t |x
(k)
t−1, θ)q(θ)

π(x(k)
t |xt−1, yt, θ)

(4)

where the posterior density p(xt|y1:t) has been recast as
a weight w(k)

t subject to the constraint that all weights at
time t sum to unity. We use the simplifying assumption
that the current model state xt depends exclusively on the

preceding state xt−1 and on θ; the q(θ) term refers to the
prior density of θ. Note that the term p(yt|y1:t−1) from (2)
is a constant with respect to xt (at each timestep) and is
therefore subsumed into the constant of proportionality.

C. Auxiliary Particle Filtering

Equation 4 shows that one of the main problems arising
from classical particle filters is that new weights (at time t)
are calculated as a product of the old weights (at time t−1)
and other terms. This tends to cause weight degeneracy, char-
acterized by weights progressively approaching zero over
time. Auxiliary particle filters (see [6]) solve this problem
by selecting the proposal densities π(xt|x(k)

t−1, yt, θ) to be the
product of (a) the old weight w(k)

t−1, (b) an approximation to
the new likelihood, and (c) the joint distribution of the state
xt and hyperparameter θ. Substituting this choice of π into
(4) yields a new weight w(k)

t that does not depend on the
old weight w(k)

t−1.
Many approaches to the task of state estimation employing

models with hyperparameters have been offered (see [9]).
Among these approaches, the most natural involves treating
θ as a parameter having it’s own prior distribution. This
approach (see [7]) incorporates a Bayesian formulation in
which, at each time stage t, both the state xt and the hyper-
parameter θ are simulated using the product of the proposal
density π and the prior q(θ). The simulated state values
are retained while their hyper-parameter counterpart values
are discarded. This simulation requires the use of Gibbs
sampling (see [10]). Gibbs sampling is a Markov Chain
Monte Carlo (MCMC) technique used to do joint simulation
by concatenating many single conditional simulations.

It is frequently advantageous to formulate the firing rate
model in terms of time blocks rather than individual time
steps. The neural model parameters are assumed to be
stationary over the duration of each block. This has the
advantage of making each parameter estimate more accurate
at the expense of reducing accuracy when firing rates change
over small time intervals.

III. METHODS

We tested the ability of the auxiliary particle filter to
track the time-varying receptive field of CA1 hippocampal
pyramidal neurons tuned to the location of a rat running back
and forth along a linear track [4]. The neural firing rate was
assumed to be an intensity function taking the form,

λt = exp
{
αt −

(ut − µt)2

2σ2
t

}
(5)

where ut denotes the position of the animal on the track
at time t. Three parameters characterize the receptive field
model and comprise the state vector xt:
• αt signifies the log of the maximum instantaneous firing

rate;
• µt signifies the center of the receptive field;
• σt signifies the standard deviation of the width of the

receptive field.

5706



Neuron spiking activity was modeled as a Poisson process
with an arrival rate of λt∆t spikes per timestep (with ∆t = 5
ms).

A. Dataset

Three different simulated experiments were conducted to
assess the performance of the extended auxiliary particle
filter. In all three cases, a virtual rat ran back and forth along
a 300 cm linear track at a constant velocity of 120 cm/s for
125 s. The parameters αt and σt were the same for all three
experiments, with αt = 3 + 0.004t, and σt = 11.5− 0.008t.
In the first experiment, termed Normal, µt varied smoothly
over time as µt = 150 − 100 cos (2πt/125). In the second,
or No Firing experiment, the place cell was temporarily
tuned to a position that was outside of the 300 cm track,
resulting in neural inactivity for a period of time. Here,
µt = 100 + 5.6t for 0 ≤ t < 62.5s, and µt = 800 − 5.6t
for 62.5 ≤ t < 125s. This tests the filter’s ability to retain
accurate estimation when the neuron does not fire and its
ability to recapture estimation when firing returns. In the
third, or Jump experiment, µt jumps abruptly, which tests the
filter’s ability to adapt to rapidly changing parameters. In this
case, µt = 50+3.2t for 0 ≤ t < 62.5s and µt = −150+3.2t
for 62.5 ≤ t < 125s.

B. Filter Implementation

The auxiliary particle filter was implemented according to
the method specified by Liu and West (for more detail, see
section 10.4 of [7]). We assumed that the prior distribution of
the state xt is Gaussian with mean (xt−1 +θ) and a diagonal
covariance matrix Q that quantifies the prior error sizes of the
parameters to be estimated. The proposal densities chosen
for αt, σt and µt were normal distributions with mean θ
and variances of σ2

α = 0.5, σ2
σ = 0.05, and σ2

µ = 3. The
number of particles was chosen to be 500. Two different
block lengths (see section II-C) were considered: n = 50
and n = 500 samples, which correspond to block durations
of t = 0.25 and t = 2.5s. The results of each experiment
were averaged over 20 trials.

The results of the auxiliary particle filter were compared
against the stochastic state point process adaptive filter,
which Eden et al developed and demonstrated using the same
neural firing model (i.e. Equation 5) used in the present study
[4]. This non-Monte Carlo (i.e. deterministic) method is a
two-step process in which the mean and variance of the
state vector are first estimated from the prior density and
then refined using current observations. The essence of this
method is contained in Equations 2.7-10 of [4].

IV. RESULTS

The three experiments (Normal, No Firing, and Jump)
were conducted using each of the three filters: the auxiliary
particle filter with time blocks of durations n = 50 (APF50)
and n = 500 (APF500) samples, and the stochastic state
point process filter (SSPPF). Each experiment was averaged
over 20 trials. Experiments were evaluated by comparing the
estimated intensity function (5) to the true intensity function.

TABLE I
MSE FOR ESTIMATED VS. TRUE INTENSITY VALUES (λt)

Normal No Firing Jump

APF50 325 ∼ 1013 137

APF500 28.1 28.2 28.0

SSPPF ∼ 1030 NaN NaN

The mean square error (MSE) was used as the metric of
comparison.

The results of this study are summarized in Table I. The
most accurate filter was found to be APF500, followed by
APF50, both of which were robust to large and sudden
changes in neural firing patterns. In contrast, SSPPF esti-
mates frequently diverged significantly, producing effectively
unusable results.

The results from the Normal experiment are summarized
in Figs. 1 and 2; these show the estimated and true intensity
functions (Fig. 1) and receptive field centers (Fig. 2). Fig. 2,
in particular, demonstrates that both of the auxiliary particle
filters tracked the receptive field center to within acceptable
accuracy. As expected, the parameter estimates trail the true
values because of the time block durations which effectively
enforce a time lag. The estimate of µt affects where the
center of the intensity function lies; the time lag in estimating
µt causes a shift in the estimated intensity functions, as seen
in Fig. 1.

19 20 21

0

20

40

60

time (s)

! t (s
pi

ke
s/

se
c)

Fig. 1. Estimated vs. true firing intensity functions for the Normal
experiment over a representative time window chosen prior to the divergence
of the SSPPF. Black is True; Green is APF500; Orange is APF50; Blue is
SSPPF.

20 40 60 80 100 120
0

50

100

150

200

250

300

time (s)

µ
t ( 

cm
 )

Fig. 2. Estimated vs. true receptive field center (µt) for the Normal
experiment. Black is True; Green is APF500; Orange is APF50; Blue is
SSPPF.

5707



20 40 60 80 100 120

100

200

300

400

500

time (s)

µ
t ( 

cm
 )

Fig. 3. Estimated vs. true receptive field center (µt) for the No Firing
experiment. The red hash marks delineate the beginning and end of the No
Firing interval, which occurs when µt is beyond the limits of the 300 cm
track. Black is True; Green is APF500; Orange is APF50; Blue is SSPPF.

20 40 60 80 100 120
0

50

100

150

200

250

300

time (s)

µ
t ( 

cm
 )

Fig. 4. Estimated vs. true receptive field center (µt) for the Jump
experiment. Black is True; Green is APF500; Orange is APF50; Blue is
SSPPF.

The results from the No Firing experiment are summarized
in Fig. 3. A tracking filter would ideally indicate little or no
change in estimated parameter values in the absence of neural
activity. The auxiliary particle filters exhibited this property
and were rapidly able to resume accurate tracking once firing
recommenced. The Jump experiment is summarized in Fig.
4. Again, both auxiliary particle filters were able to adapt
to the instantaneous shift in the receptive field center. The
APF50 filter, with its shorter time block duration, adapted
more rapidly than the APF500 filter. Figs. 2-4 show that the
SSPPF filter is consistently and inherently unstable in the
context of the three experiments presented here.

V. DISCUSSION

This paper demonstrates the application of auxiliary par-
ticle filtering to the problem of neural parameter estimation.
This problem is of vital interest both for neuroscientists
studying brain functionality at the individual neuron level and
for engineers developing brain-machine interfaces. Auxiliary
particle filtering has been shown to be more stable than other
parameter tracking methods, especially for noisy datasets or
complicated intensity models. In this context, it is appropriate
for neural parameter tracking, which is characterized by
noisy recordings, inaccurate spike detection and sorting, and
rapidly changing parameters. The results of this work clearly
demonstrate that the auxiliary particle filter is well suited
for neural parameter tracking in neural models with multiple

parameters. In particular, the APF50 and APF500 algorithms
were stable during periods of neural quiescence.

The length of the time block over which tracking is
averaged is an important design parameter. Although this
work did not attempt an exhaustive analysis of time block
duration, it was shown that APF500, (duration t = 2.5
s) outperformed APF50, (duration of t = 0.25 s). This
improvement in accuracy came at the cost of an increased
time lag between true and estimated parameter values (see
Figs. 2-4). However, under some circumstances, increased
time block duration may be to the advantage of the filter.
For example, Fig. 3 indicates that the APF500 has a ten
fold slower drift than that of APF50 during the No Firing
interval. This is as expected, since the APF500 state vector is
updated only one tenth as often as that of APF50. It remains
unclear whether further increases in time block duration
would continue to yield improved tracking.

The SSPPF algorithm was found to be sensitive with
respect to small changes in the data set, providing good
tracking results on some runs and filter divergence on others.
A major deficiency of the SSPPF is that it requires inversion
of a covariance matrix which tends to become singular (and
hence uninvertible) over time, thus causing the simulation
to effectively collapse. This causes either highly inaccurate
simulation results (i.e. ∼ 1030 for the Normal simulation) or
no results at all as with the No Firing and Jump cases (see
Table I).

VI. CONCLUSION
The auxiliary particle filter has been shown to be a

stable and accurate method for tracking neural parameters.
In the future, this work will be extended into a multi-neuron
framework in which both the neural parameters and the track
position will be estimated. Future testing with actual neural
recordings will provide further validation of this method.

REFERENCES

[1] MR Mehta, CA Barnes, and BL McNaughton, “Experience-dependent,
asymmetric expansion of hippocampal place fields,” P Natl Acad Sci
Usa, vol. 94, no. 16, pp. 8918–21, Aug 1997.

[2] S Haykin, Adaptive Filter Theory, Prentice Hall, Englewood Cliffs,
NJ, 4th edition, 1984.

[3] EN Brown, DP Nguyen, LM Frank, MA Wilson, and V Solo, “An
analysis of neural receptive field plasticity by point process adaptive
filtering,” P Natl Acad Sci Usa, vol. 98, no. 21, pp. 12261–12266,
Jan 2001.

[4] UT Eden, LM Frank, R Barbieri, V Solo, and EN Brown, “Dynamic
analysis of neural encoding by point process adaptive filtering,” Neural
Comput, vol. 16, no. 5, pp. 971–998, Jan 2004.

[5] NJ Gordon, DJ Salmond, and AFM Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation,” Iee Proc-F, vol.
140, no. 2, pp. 107–113, Jan 1993.

[6] MJ Pitt and N Shephard, “Filtering via simulation: Auxiliary particle
filters,” J Am Stat Assoc, vol. 94, no. 446, pp. 590–599, Jan 1999.

[7] J Liu and M West, “Combined parameter and state estimation in
simulation-based filtering,” in Sequential Monte Carlo Methods in
Practice, chapter 10. Springer, 1st edition, 2001.

[8] Y Wang, A Paiva, and J Principe, “A monte carlo sequential estimation
for point process optimum filtering,” Neural Networks, 2006. IJCNN
’06. International Joint Conference on, pp. 1846 – 1850, Jun 2006.

[9] A Doucet, N deFreitas, and N Gordon, Sequential Monte Carlo
Methods in Practice, Springer, 1st edition.

[10] JS Liu, “The Gibbs Sampler,” in Monte Carlo Strategies in Scientific
Computing, chapter 6. Springer, 2002.

5708


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

