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H. Scheinin4, and P.A. Karjalainen1

1Department of Physics, University of Kuopio, Kuopio, Finland
2Department of Anaesthesiology and Intensive Care, Turku University Hospital, Turku, Finland

3Department of Clinical Neurophysiology, Turku University Hospital, Turku, Finland
4Turku PET Centre, Turku, Finland

Abstract— A time-varying parametric spectrum estimation
method for analyzing EEG dynamics is presented. EEG signals
are first modeled as a time-varying auto-regressive stochastic
process and the model parameters are estimated recursively
with a Kalman smoother algorithm. Time-varying spectrum
estimates are then obtained from the estimated parameters.
The proposed method was applied to measurements collected
during low dose propofol anesthesia. The method was able to
detect changes of event related (de)synchronization type elicited
by verbal command.

I. INTRODUCTION

Anesthetic medications have substantial effects on neuro-

nal activity and this change appears to produce the characte-

ristic central nervous system (CNS) effects defined as anest-

hesia, i.e. alter brain’s ability to process information from the

environment impacting on consciousness and memory. Elect-

roencephalogram (EEG) provides a high-temporal resolution

imaging modality for relating brain activity to cognitive func-

tion [1]. Because it is believed that general anesthetics block

consciousness by depressing the CNS, and electrical activi-

ty of the cerebral cortex can be measured with EEG, it is

expected that some component of the EEG should relate to

depth of anesthesia [2]. In fact, the use of processed EEG as

a supplement to other monitoring techniques is based on the

observation that anesthetic medications all alter the synaptic

function which produces the EEG.

Measuring brain electrical activity in an attempt to pre-

vent inadequate anesthesia states, such as responsiveness to

surgical stimuli and awareness, is still a difficult task. This is

evident when considering the wide variety of electrophysio-

logical variables described in the literature. Frequency and

time domain derivations of spontaneous EEG have been in-

volved in anesthesia research and monitoring, e.g. [3], [4],

[5], [6]. Processed auditory evoked potentials (AEP) have

been proposed as a potential method for the detection of

intra-operative awareness [7]. Furthermore, it has been sug-

gested that the assessment of deep states of anesthesia may

be improved by the use of components of somatosensory
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evoked potentials (SSEP), rather than just burst suppression

patterns of EEG [8].

An event related deshynchronization (ERD) type of EEG

response is, for instance, the disappearance of the occipi-

tal alpha rhythm in the awake state when the eyes are ope-

ned [1]. During anesthesia, sensory stimulation can elicit an

arousal reaction of the ERD type, a behavior also obser-

ved during emergence from anesthesia [9], [10]. Alternati-

vely, stimulation may evoke an event related synchroniza-

tion (ERS) type of reaction, that is a shift towards lower-

frequency, high amplitude activity [11]. This kind of pheno-

menon is typically related to deeper anesthesia states.

In this paper, we present a method for estimating time-

varying spectral characteristics of EEG signals. The mea-

sured signals are first modeled with a non-stationary auto-

regressive (AR) process. Estimates for the model parameters

are obtained with a Kalman smoother algorithm. The time-

varying spectrum is finally obtained from the estimated para-

meters. The presented algorithmic work is a continuation of

the previous work of some of the authors [12], [13]. The pro-

posed method was applied to measurements collected during

low dose propofol anesthesia. The method was able to detect

ERS/ERD type of responses elicited by verbal command.

II. METHODS

For dynamic spectral estimation of EEG we use a state-

space mathematical formalism. Then, Kalman filter and fixed

interval smoother algorithms can be applied for estimating

the model parameters [12]. In the following, a short descrip-

tion of the Kalman smoother spectrum estimation approach

is given, for details see also [13].

An EEG signal is here modeled with a time-varying AR

model of order p defined as

xt = −

p∑

j=1

a
(j)
t xt−j + et, (1)

where xt is the measured signal, a
(j)
t is the value of j’th AR

parameter at time t and et is the observation error. By using
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the notation

Ht = (xt−1, . . . , xt−p) (2)

θt = (−a
(1)
t , . . . ,−a

(p)
t )T (3)

the time-varying AR model can be written in the form

xt = Htθt + et, (4)

which is a linear observation model. For the time evolution

of the states a random walk model is here used

θt+1 = θt + wt, (5)

where wt is the state noise vector process. Equations (4) and

(5) form a state-space signal model for the time-varying AR

process xt, and the model parameters can be estimated by

using the Kalman smoother algorithm.

A. Kalman smoother algorithm

The Kalman filtering problem is related to the determina-

tion of the mean square estimator θ̂t for the state θt based on

the observations x1, x2, . . . , xt. The optimal mean square es-

timator can be obtained recursively by restricting to a linear

form, or by assuming the noise processes to be Gaussian.

Then the filter algorithm can be written as

Cθ̃t|t−1
= Cθ̃t−1

+ Cwt−1
(6)

Kt = Cθ̃t|t−1
HT

t (HtCθ̃t|t−1
HT

t + Cet
)−1 (7)

θ̂t = θ̂t−1 + Kt(xt − Htθ̂t−1) (8)

Cθ̃t
= (I − KtHt)Cθ̃t|t−1

(9)

where θ̃t is the state estimation error θ̃t = θt− θ̂t, and θ̃t|t−1

is the state prediction error θ̃t|t−1 = θt − θ̂t−1, Kt is the

Kalman gain vector, and Cet
and Cwt

are the observation

and state noise covariances, respectively.

If all the measurements x1, x2, . . . , xN are available, then

the fixed interval smoothing problem can be considered,

that is the determination of estimates θ̂ S
t (S denotes smoot-

hed estimates) for each state θt given all the observations

x1, x2, . . . , xN . The complementary fixed-interval smoothing

equations (forward-backward smoother algorithm) can be

written as

θ̂ S
t = θ̂t + At(θ̂

S
t+1 − θ̂t) (10)

Cθ̃ S
t

= Cθ̃t
+ At(Cθ̃ S

t+1
− Cθ̃t+1|t

)AT
t (11)

where At = Cθ̃t
C−1

θ̃t+1|t
and the filter estimates are used for

the initialization, i.e. θ̂ S
N = θ̂N and Cθ̃ S

N

= Cθ̃N
.

B. Adaptation of the algorithm

The adaptation of Kalman smoother algorithm can be cont-

rolled through the determination of the state and observation

noise covariances Cwt
and Cet

= σ2
e . The observation noi-

se variance can be estimated iteratively at every step of the

Kalman filter equations as

σ̂2
et

= 0.95 σ̂2
et−1

+ 0.05 ǫ2t , (12)

where ǫt is the one step prediction error ǫt = xt − Htθ̂t−1.

Furthermore, the state noise covariance is selected to be dia-

gonal Cwt
= σ2

wI , and σ2
w is adjusted at every step of the

Kalman filter equations as

σ̂2
wt

= UC σ̂2
et

/σ̂2
xt

, (13)

where σ̂2
xt

is the estimated variance of the observed signal

at time t and UC is an update coefficient through which the

adaptation of the algorithm can be adjusted.

C. Time-varying spectrum estimation

The time-varying spectrum estimate is obtained from the

time-varying AR parameter estimates â
(j)
t as

Pt(f) =
σ̂2

et
/fs

|1 +
∑p

j=1 â
(j)
t e−i2πjf/fs |2

, (14)

where fs is the sampling frequency, â
(j)
t is the j’th AR pa-

rameter estimate at time t, and σ̂2
et

is the variance of the

estimated observation error process that can be estimated as

σ̂2
et

= 0.99 σ̂2
et−1

+ 0.01 ê2
t , (15)

based on the smoother estimates, i.e. êt = xt −Htθ̂
S
t . Here,

a non-causal operation for (15) is used.

III. RESULTS

Data from ten healthy male subjects (age 19-28 years)

undergoing propofol anesthesia were analyzed. Propofol

was administered intravenously using target control infusion

(TCI) aiming at pseudo steady-state plasma concentrations

at 10 min intervals starting from 1.0 µg/ml and followed by

0.25-0.5 µg/ml increases until loss of consciousness (LOC)

was reached. After LOC, propofol infusion was terminated.

At each concentration level and after terminating the in-

fusion, consciousness was assessed by asking the subject to

open his eyes. LOC was defined as no response to the “open

your eyes” request and return of consciousness (ROC) as a

meaningful response to the same request. A semantic presen-

tation of the study setup is given in Fig. 1. However, subjects

reached LOC at different concentration levels. Additionally,

the time interval needed for reaching ROC varied.

EEG channels were recorded using a Galileo (Medtronic,

Italy) EEG acquisition system (reference: linked mastoids).

The sampling rate of the EEG signal was 256 Hz. For analy-

sis, we present here only estimates obtained from channel Fz.

This is a reasonable location to observe the strong synchro-

nization and amplitude increase of frontal alpha to beta bands

close to loss of consciousness induced by propofol medica-

tion (e.g. [6], [5]). Multichannel analysis showed a consistent

behavior for all the subjects participating in the experiment,

that is a gradual increase in frontal activity towards LOC as

it was expected from previous studies.

The signals were first high pass filtered (Butterworth filter,

order 6, cutoff frequency 1 Hz). The power line noise was

also removed. Finally, in order to facilitate the model order

selection, the signals were decimated at half the sampling
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Fig. 1. Semantic presentation of the study setup. Consciousness was tested
twice at each drug level and at 1 min intervals after the infusion was termi-
nated. The color of arrows on the bottom indicate the result of LOC-testing
(red=response, blue=no response).
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Fig. 2. Representative subject (Subject 1) under propofol anesthesia (drug
concentration at LOC 1.75 µg/ml). Kalman smoother time-varying spectrum
(top) for the EEG band [0.5-25] Hz. Peak frequency within the band [8-25]
Hz (middle) as a function of time and an adaptive band selection (symmet-
ric around the peak frequency, 5 Hz wide). At the bottom, the power of
the selected band is presented. Red markers denote response to verbal com-
mand and the blue marker represent the moment of no response (LOC). The
time is presented in minutes from the beginning of the experiment. Kalman
smoother algorithm was able to track meaningful brain reactions in multiple
signal components.

rate. For analysis, the time interval from 2 minutes befo-

re PLOC (moment of the last response prior to LOC) to

2 minutes after ROC was selected. In order to avoid any

concerns related to the initialization of the algorithm, 2 mi-
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Fig. 3. Representative subject (Subject 2) under propofol anesthesia (drug
concentration at LOC 1.75 µg/ml). Figure description as in Fig. 2. A strong
brain response during LOC is also observable.

nutes longer data segments were used, i.e. an extra minute

at the beginning and an extra minute at the end of the above

mentioned time interval. Then Kalman smoother spectrum

estimates were calculated (AR model order p = 30, update

coefficient UC=9 · 10−6). The same selections were applied

for all the subjects.

In Fig. 2 and Fig. 3, Kalman smoother spectral estimates

for two representative subjects are presented. The subjects

reached LOC at the same drug concentration level. Clear-

ly, both subjects demonstrate strong reactions at PLOC time

instances (drug concentration 1.5 µg/ml) resembling those

at ROC. The responses are of both ERS and ERD type in-

volving multiple frequency bands. By visual inspection, a

similar behavior is observed at least for Subject 2 also du-

ring LOC. Based on the Kalman smoother spectral estimates,

this kind of response during LOC was consistent and easily

observable for several of the subjects in the study group. In

Fig. 4 we also present results obtained from all the subjects

in the study group. Brain reactivity during PLOC, LOC, as

well as ROC is observable from these plots.

IV. CONCLUSIONS

A Kalman smoother based time-varying EEG spectrum

estimation method was presented. Considering parametric

spectrum estimation methods based on time-varying AR mo-

del, Kalman smoother algorithm is an optimal method for
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Fig. 4. Group results: average (blue), +-2 times the standard error (cyan) obtained for all the subjects (n=10) in the experiment. The results are presented
close, i.e.-2 m to +2 m, to the moments of PLOC (last response prior to loss of consciousness), LOC (loss of consciousness), ROC (first meaningful
response after LOC). In the first line (top) is the peak frequency within the band [8-25] Hz and at the second line (bottom) the band power based on an
adaptive band selection (subject specific, symmetric around the individual peak frequencies, 5 Hz wide). Brain reaction at LOC can also be observed.

estimating the model parameters. Of importance is the se-

lection of model order and update coefficient. Those were

here selected based on visual inspection of the estimates.

The method was applied to measurements collected du-

ring low dose propofol anesthesia. The method was able to

track ERS/ERD type of changes elicited by verbal command

covering a wide frequency range and in different sedation le-

vels. The results obtained so far seem important for anest-

hesia research and monitoring and require deeper physiolo-

gical investigation. For example, brain reactivity during loss

of consciousness was observed for several subjects in the

study group. The approach will also be applied to subjects

undergoing anesthesia induced by other anesthetic agents.
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