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Abstract— We describe a novel automatic algorithm to con-
tinuously estimate the pulse pressure variation (PPV) index
from arterial blood pressure (ABP) signals. The algorithm
utilizes our recently developed sequential Monte Carlo method
(SMCM) based on a maximum A-Posterior adaptive marginal-
ized particle filter (MAM-PF). The PPV index is one of most
specific and sensitive dynamic indicators of fluid responsiveness
in mechanically ventilated patients. We report the assessment
results of the proposed algorithm on real ABP signals.

Index Terms— Amplitude modulation, amplitude modulation
index, pulse pressure variation, sequential Monte Carlo method,
state-space model.

I. INTRODUCTION

IN many critical care settings clinicians must decide
whether patients should be given intravenous fluid boluses

and other therapies to improve perfusion. This is a critical
tradeoff because excessive fluid can impair lung function
thereby decreasing oxygen delivery to tissues and ultimately
contributing to organ failure. However, low perfusion caused
by insufficient fluid can also lead to tissue damage. Determin-
ing the best course of fluid therapy for a patient is difficult
and clinicians have few clinical signs to guide them.

The pulse pressure variation (PPV) index is a measure
of the respiratory effect on the variation of systemic arterial
blood pressure in patients receiving full mechanical venti-
lation [1]–[5]. It is a promising predictor of who will have
a significant increase in cardiac output due to an infusion
of fluid. We describe a novel automatic algorithm that can
be used to obtain the pulse pressure variation (PPV) index
from arterial blood pressure (ABP) signals. The proposed
algorithm is based on sequential Monte Carlo estimation
methods.

The standard method for calculating PPV often requires
simultaneous recording of arterial and airway pressure. Pulse
pressure (PP) is manually calculated on a beat-to-beat basis
as the difference between systolic and diastolic arterial
pressure. Maximal PP (PPmax) and minimal PP (PPmin)
are calculated over a single respiratory cycle, which is
determined from the airway pressure signal. Pulse pressure
variation, ∆PP, is then calculated as the percentage

∆PP(%) = 100× PPmax − PPmin

(PPmax + PPmin)/2
(1)
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There are few publicly available algorithms to automati-
cally estimate PPV accurately and reliably. We have previ-
ously described a beat detection-based PPV algorithm [6].
This previous algorithm was made publicly available by the
authors and it has been adopted by Philips Medical Systems.
Currently, our previously published PPV index is displayed
in real-time on the Philips Intellivue MP70 monitors (Intel-
livue MP70, Philips Medical Systems). Its ability to monitor
fluid responsiveness in the operating room and its accuracy
against the gold standard obtained by manual annotations
were assessed by Cannesson [7].

A limitation of our previously described [6] algorithm
adopted by Philips in their Intellivue MP70 monitors is that
it may not work adequately in regions of abrupt hemo-
dynamic changes. In this paper, we describe an improved
algorithm capable of continuously estimating PPV based on
a maximum A-Posterior adaptive marginalized particle filter
(MAM-PF).

II. ALGORITHM DESCRIPTION

The proposed PPV index tracker utilizes our recently
developed MAM-PF which is based on the state-space model
approach. The state-space method is a tool to describe the
evolution of an unobservable state xn and its relation to
measurement yn so that one can estimate xn as a function
of yn. The typical state-space model can be expressed as,

xn+1 =f (xn) + un (2)
yn =h (xn) + vn (3)

where (2) is a process model, (3) a measurement model,
f (·) and h (·) nonlinear functions of the ` dimensional state
xn, and un and vn uncorrelated white noise with variances
q and r, respectively. x̂n|0:n denotes a causal estimate of
xn given all previous measurements y0:n = {y0, . . . ,yn}.
The proposed PPV index tracker produces a causal estimate
x̂n|0:n, so that it can be implemented as a real-time appli-
cation. However, the tracker is easily generalized to produce
non-causal estimates for offline analysis in which the entire
recording is available.

A. Notation

We have adopted the notation used in [8] with minor
modification. We used boldface to denote random processes,
normal face for deterministic parameters and functions, upper
case letters for matrices, lower case letters for vectors and
scalars, and subscripts for time indices.
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B. Measurement Model

McNames et al. proposed a general measurement model
of the cardiovascular signal [9]. However, their model is not
appropriate to estimate the PPV index. We propose a novel
measurement model of the ABP signal, from which one can
obtain the PPV index directly with minimal computation.
The measurement model is shown in (4)–(8),

yn =sn + vn (4)
sn =rn + (1 +mn) cn + tn (5)

rn =
N r

h∑
k=1

c1,k,n cos (kθr
n) + c2,k,n sin (kθr

n) (6)

mn =
N r

h∑
k=1

c3,k,n cos (kθr
n) + c4,k,n sin (kθr

n) (7)

cn =
N c

h∑
k=1

c5,k,n cos (kθc
n) + c6,k,n sin (kθc

n) (8)

where rn is a respiratory signal, mn a modulation factor,
cn a cardiac signal, tn a slow signal trend, θr

n a respiratory
instantaneous angle, θc

n a cardiac instantaneous angle, N r
h

the number of respiratory harmonic components, N c
h the

number of cardiac harmonic components, and vn a white
Gaussian observation noise with variance r. The amplitude
of the modulation factor mn represents the degree of the
amplitude modulation (AM) of the cardiac signal cn due
to the respiratory signal rn. In the proposed model mn

is modeled as a separate component from rm although
both reflect the respiratory activity. However, in the general
cardiovascular model proposed by McNames et al., mn

is modeled as a filtered quantity of rn, which makes it
hard to compute PPV directly from the model. Given the
measurement model shown in (4)–(8) the total number of
parameters to estimate is 4N r

h + 2N c
h + 2.

C. Process Model

In many applications the range of the possible mean
frequencies is known from domain knowledge. For example,
in an application to track the heart rate of an adult, the
range of typical adult heart rates is known. We model this
by designing the process model such that f̄n has a uniform
distribution f̄ ∼ U(fmin, fmax). The process model can be
written as,

f̄ c
n+1 =g

[
f̄ c
n + uf̄ c,n

]
(9)

f c
n+1 =f̄ c

n + α
(
f c
n − f̄ c

n

)
+ uf ,n (10)

θc
n+1 =θc

n + 2πTsf
c
n (11)

where g [·] is a nonlinear reflecting function,

g[f ] =


fmax − (f − fmax) fmax < f

f fmin < f ≤ fmax

fmin + (fmin − f) f ≤ fmin

(12)

This essentially causes the mean frequency f̄ c
n to bounce

elastically from the boundaries at fmax and fmin, which in

TABLE I
SUMMARY OF USER-SPECIFIED DESIGN PARAMETERS FOR THE PPV

INDEX TRACKER

Name Symbol Value
No. particles Np 250
No. cardiac harmonic components N c

h 6
No. respiratory harmonic components N r

h 3
Minimum heart rate f c

min 60/60 Hz
Maximum heart rate f c

max 140/60 Hz
Measurement noise variance r σy /1000
Cardiac mean frequency variance qf̄ c 7e-6 Ts

Cardiac frequency variance qf c 7e-4 Ts

Respiratory signal coefficient variance qc1&qc2 1e-5 Ts

Modulation factor coefficient variance qc3&qc4 1e-9 Ts

Cardiac signal coefficient variance qc5&qc6 1e-6 Ts

turn ensures that at any given time n the mean frequency
f̄ c is uniformly distributed within this range. The respiratory
rate f r

n is a known constant value f r since the ABP signal is
from mechanically ventilated subjects in which the clinician
specifies the respiratory rate. The respiratory instantaneous
angle θr

n+1 can be expressed as a cumulative sum of f r,
which can be written as,

θr
n+1 =2π(n+ 1)Tsf

r. (13)

The sinusoidal coefficients {c1,k,n, . . . , c6,k,n} and the slow
signal trend tn are modeled as random walk processes,

c·,k,n+1 =c·,k,n + uc,n (14)
tk,n+1 =tn + ut,n (15)

where uc·,n and ut,n are white Gaussian process noises with
variances qc· and qt, respectively.

D. ABP Signal Tracking

We proposed a multiharmonic tracking method based on
the conventional sequential Monte Carlo method (SMCM)
[10]. Recently we have developed a novel SMCM that can
overcome some of the limitations of conventional SMCM
algorithms such as sample degeneracy, sample impover-
ishment, and multi-modal posterior distributions [11]. We
applied the new SMCM, called the maximum a posteriori
adaptive marginalized particle filter (MAM-PF), to the state-
space model of the ABP signal. The MAM-PF is able to track
the heart rate f c

n along with other sinusoidal coefficients
{c1,k,n, . . . , c6,k,n} and the slow signal trend tn.

Table I lists the MAM-PF ABP signal tracker’s user-
specified parameters such as the number of particles, the
number of harmonic components, process and measurement
noise variances, and initial values.

E. PPV Tracking

The PPV index (∆PP) is the peak-to-peak value of
the modulation factor mn as shown in Fig. 1. It is also
2× the AM modulation index of the amplitude-modulated
cardiac signal, (1 +mn) cn. Given the estimated sinusoidal
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Fig. 1. Modulation factor mn and PPV index ∆PP

coefficients {c3,k,n, c4,k,n}, the modulation factor’s peak-to-
peak value ∆mn can be easily estimated as follows,

θmax = arg max
θ

N r
h∑

k=1

c3,k,n cos (kθ) + c4,k,n sin (kθ)

θmin = arg min
θ

N r
h∑

k=1

c3,k,n cos (kθ) + c4,k,n sin (kθ)

mn,max =
N r

h∑
k=1

c3,k,n cos (kθmax) + c4,k,n sin (kθmax)

mn,min =
N r

h∑
k=1

c3,k,n cos (kθmin) + c4,k,n sin (kθmin)

∆mn =mn,max −mn,min (16)

where 100 × ∆mn is equal to ∆PP(%). Aboy et al. pro-
posed an algorithm to estimate the PPV index based on
bandpass-filtering, beat detection, and interpolation [6]. Our
PPV index estimation method does not involve any filtering
process or beat detection algorithm which is prone to noise.
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Fig. 2. Original and estimate ABP signals (top) and sinusoidal coefficients
{c3,1,n, c4,1,n} of the modulation factor mn (bottom)

III. ASSESSMENT

A. Data Collection

The Massachusetts General Hospital (MGH) Waveform
Database on PhysioNet is a comprehensive collection of elec-
tronic recordings of hemodynamic and electrocardiographic
waveforms patients in critical care units [12], [13]. The
database includes ABP signals in addition to seven other
types of waveforms. By visual inspection of the spectrogram
of ABP signals we identified two patients whose ABP signals
were clean and respiratory rate remained constant at least for
10 consecutive minutes. We used the constant respiratory
rate shown in spectrogram as an indicator of full respiratory
support.

Since the respiratory rate f r was not annotated or recorded
as part of this data set, we estimated it from the ABP signal
in three steps. First, the ABP signal was lowpass-filtered with
a cutoff frequency of 1 Hz to remove all cardiac components.
Second, multiple synthetic cosine signals cos (2πnTsf) were
generated by sweeping the frequency f from 0.01 to 1.
Finally, we calculated cross-correlation between the lowpass-
filtered ABP signal and synthetic cosine signals and chose
the frequency that maximized the correlation as our estimated
respiratory rate f r.

B. Gold Standard

We manually detected the peaks and troughs of the ABP
signals and calculated the PPV indices, which is the best
current practice. They are referred to as manual PPV indices.
A Bland-Altman plot is a visualization method that is often
used in PPV index estimation to determine the agreement
between two different estimates. We used it to compare the
best current practice using manual annotations with our new
automatic tracking algorithm.

IV. RESULTS AND DISCUSSION

Fig. 2 shows an example of the original and estimated
ABP signals (top) and sinusoidal coefficients {c3,1,n, c4,1,n}
of the fundamental component of the modulation factor mn

(bottom). Given the sinusoidal coefficients {c3,k,n, c4,k,n},
the PPV index ∆PP can be obtained as explained in (16).

Figs. 3 and 4 illustrate the time series of manual and au-
tomatic PPV indices (top) and Bland-Altman plot (bottom)
of each of two patients. The PPV indices of the first patient
were relatively smaller (under 30%) than those (over 30%) of
the second patient. The variation of the first patient’s PPV
indices was also smaller than that of the second patient’s.
In both cases, the proposed method was able to estimate
the PPV index accurately over a wide range of the manual
PPV index. Table II lists the percentage of the automatic
PPV indices within a certain estimation error range.

There is a slight delay in the automatic PPV index
estimates as compared to the manual estimates because the
automatic algorithm is causal and only uses past and present
observations of the ABP signal to estimate the PPV index.
The manual estimates are based on non-causal estimates of
the systolic and diastolic peaks and therefore lacks the slight
delay observed with the automatic algorithm. For offline
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Fig. 3. Time series of manual and automatic PPV indices (top) and
Bland-Altman plot (bottom) of Patient 1
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Fig. 4. Time series of manual and automatic PPV indices (top) and
Bland-Altman plot (bottom) of Patient 2

signal analysis, the proposed tracking algorithm could easily
be modified to produce non-causal estimates with improved
accuracy and no delay.

V. SUMMARY

We proposed a novel state-space model of the ABP signal
from which one can obtain the PPV index directly and con-
tinuously. We adopted our recently developed multiharmonic
tracking method to estimate the parameters of this state-
space model. Using the estimated parameters we devised a
novel way to estimate the PPV index without involving any
filtering or beat detection.

Commercial devices for PPV monitoring are still under
development and the estimates provided by the current
generation of devices are not always accurate. The automatic
algorithm described in this paper uses a new approach with
greater accuracy that may ultimately improve the outcome of
people with critical injuries and illness by helping clinicians
more accurately predict the response to fluid therapy.
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