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Abstract- Breast cancer is the leading cause of cancer related 
deaths in women between the ages of 15 and 54, and the second 
cause of cancer death in women the 55 to 74 age range. In 
recent years, Breast Microwave Imaging (BMI) has shown its 
potential as a promising breast cancer detection technique. 
This imaging technology is based on the electrical 
characteristic differences that exist between normal and 
malignant breast tissues at the microwave frequency range.  A 
novel reconstruction approach for the formation of 2D BMI 
models is proposed in this paper. This technique uses the phase 
differences introduced during the collection of target responses 
in order to determine the correct spatial location of the 
different structures that constitute the final image. The 
proposed method yielded promising results when applied to 
simulated data sets obtained from Magnetic Resonance Images 
(MRI). 

I. INTRODUCTION AND MOTIVATION 

   During the last decade, the use of microwave techniques 
as a complimentary tool for breast cancer detection has been 
proposed [1,2,3,4]. The basis of this imaging modality are 
the dielectric differences between cancer and normal breast 
tissue in the 900MHz-20GHz frequency range[5]. One of 
the most promising microwave technologies for breast 
cancer detection is Breast Microwave Radar Imaging 
(BMRI). Similarly to conventional radar applications, 
BMRI systems irradiate an electromagnetic wave into the 
scan area, which is usually formed by several types of 
tissues with different dielectric properties. The 
backscattered signals from the different breast structures are 
then recorded and displayed so they can be visualized and 
interpreted. 

The BMRI data acquisition process is performed along 
circular or quasi circular scan trajectories in order to suit 
better the geometry of the breast region. As discussed in [3], 
as the irradiation is performed along the scan trajectory, the 
target responses have different travel times, resulting in the 
formation of non linear signatures. This fact makes difficult 
to determine the correct dimensions and locations of the 
different scattering structures present in the scan area.  
In order to properly visualize the targets reflections, the 
collected data must be focused [6]. During the last years, a  
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wide variety of techniques have been proposed for BMRI 
reconstruction purposes. In general, these methods can be 
classified as either time-shift techniques or wavefront 
reconstruction approaches. Time-shift techniques perform a 
shift-sum process over a set of focal points in the scan area. 
Two examples of this approach are the confocal mapping 
algorithm [3,4] and the beamforming reconstruction method 
[2]. 

The use of wavefront reconstruction techniques to form 
BMRI images has been proposed by the authors in [6]. 
Wavefront reconstruction approaches focus the data by 
processing the spectrum of the collected reflections and 
transferring it from the spatial-temporal domain where it is 
originally acquired to the spatial domain where it will be 
displayed. Although each method has advantages and 
disadvantages of their own, time-shift techniques are 
characterized by their low computational cost, while 
wavefront reconstruction approaches exhibit a higher Signal 
to Noise Ratio (SNR) and an increased focus quality [6]. 
   A problem of wavefront reconstruction approaches is 
their execution time. Depending on the sampling parameters 
of the radar system, the time needed to form an image is 
between 12.5 seconds to 2 minute. In this paper, an 
improved wavefront reconstruction technique is proposed. 
This approach uses a novel interpolation approach to 
significatively reduce the image reconstruction time without 
compromising the focal quality and noise levels of the 
focused images. The proposed method was evaluated using 
a set of numeric phantoms obtained from Magnetic 
Resonance Imagery (MRI) data sets. The execution time, 
SNR and focal quality of the reconstructed images was 
calculated in order to assess the performance of the 
proposed technique. 
     This paper is organized as follows. The signal model is 
described in section 2.  In section 3, a description of the 
proposed approach is given. The results of the proposed 
reconstruction technique using simulated data are shown 
and discussed in section 4. Finally, concluding remarks can 
be found in section 5. 
 

II. SIGNAL MODEL 
 

A 2D cylindrical scan trajectory is used in this paper. In 
this approach, the patient lies in a prone position and the 
antenna array is positioned in a circular array in the x-y 
plane around the circular shape adopted by the breast [6]. 
Let consider a circular array formed by N antennas 
uniformly distributed in a circle of radius R.  In this case, 
every element is facing towards the center of the array. T 
point scatterers are assumed to be located inside the area 
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delimited by the array. For the following discussion, the 
center of the antenna array will be considered to be at the 
origin of the coordinate system. Also, a polar coordinate 
system will be used in order to simplify the calculations. 
Then, the location of the p scatter will be (rp ,φp) where 

22
ppp yxr +=  and ( )ppp xy /tan 1−=φ . In this case the 

distance between the scan location at  (R, θ) and the p scatter 
is )cos(222 θφ −⋅⋅−+= ppp rRrRD . A diagram of this 

model can be seen in figure 1. 
At each scan location, on at a time, a waveform f(t) is 

radiated and the responses from the targets with the scan 
area are recorded at the same scan position. For the scan 
location at (R, θ), the received signal can be expressed as: 
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 where ν is the propagation speed of the medium and jσ is 
the reflectivity of the qth target. The collected data set is a 
function of the signal travel time and the spatial location of 
the recording point.  

 
Figure 1. Geometry of the cylindrical array 

 
 

III.FAST WAVEFRONT RECONSTRUCTION 
 

Due to the fact that most of the BMRI data is acquired 
and processed using digital equipment, s(t,θ ) usually has 
the form of an evenly sampled discrete space. This is. The 
sampled version of s(t,θ), is defined over an LxN grid, 
where L is the number of time samples, N is the total scan 
locations in the circular scan pattern. Wavefront 
reconstruction techniques transfer the spectrum of the 
collected data from its original spatial temporal frequency 
space to the spatial frequency space corresponding to the 
scan area. The first step to accomplish this is to calculate the 
Fourier transform of the collected data in the t and θ scan 
trajectories. This resulting expression is: 
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where 𝐹(𝜔, 𝜀) is the spectrum amplitude component in the (𝜔, 𝜀) frequency space. Details about the mathematic 
procedure behind the derivation of (2) can be found  in [6]. 
    The spectrum of the spherical phase function is formed by 
two main components. The first type, denoted as 

)',','( zp kεωκ , are the Phase Modulated (PM) terms related 
to the target responses. These terms are a function of the 
target location, (rp,φp).  The second type of spectral 
components, )',','( zkεωγ , are the PM terms related to the 
delays produced by the shape of  the scan geometry.  In 
order to eliminate the effects of the scan trajectory on the 
collected data, )',','( zkεωγ  must be removed from 

)',','( zp kS εω . For this purpose, the following operation is 
performed: 
 

),(),(),( εωεωεω CSU ⋅=       (3) 

 
where ε is the frequency counterpart of θ and: 
 𝐶(𝜔, 𝜀) = exp ൬𝑗 ቀ√4𝑘ଶ𝑅ଶ − 𝜀ଶ + 𝜀 ∙ (𝑠𝑖𝑛ିଵ(𝜀 2𝑘𝑅⁄ ) +𝜋)ቁ൰ (4) 

 
A detailed explanation about the derivation of the 
expression corresponding to )),( εωC  can be found in [6].  
Next, the inverse Fourier transform of the compensated data 
in the ε direction is calculated. The resulting expression is: 
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where νω /=k  is often called the wavenumber. 
 
    According to the Fourier slice theorem, S(ω, θ) 
corresponds to a set of M equally spaced projections of the  
rectangular frequency spectrum, I(kx, ky), of the target 
responses. Each projection passes through the origin and has 
the same angle that the scan locations where it was 
recorded.  To be able to visualize the compensated data in a 
rectangular coordinate system, S(ω, θ) must the transferred 
to the frequency space (kx, ky). Usually this is done using the 
following mapping: 
 
 )cos(/ nmkux ⋅= ν , )sin(/ nmkuy ⋅= ν  ∀(𝑚, 𝑛) ∈ (𝜔, 𝜃).  (6) 
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 The problem with this mapping is that the separation 

between the adjacent samples is not uniform. Although this 
kind of frequency spaces can be processed using Fourier 
techniques that consider non equidistant sampling, the 
resulting images exhibit reduced spatial resolution and the 
formation of ringing artifacts. If conventional Fourier 
techniques are to be used, an interpolation process must be 
performed to generate an evenly sampled spectrum. The 
interpolation in these cases is often done by using Qhull 
based interpolation methods [7]. However, these approaches 
have an expected performance of 𝑂൫𝑛 ∙ 𝑙𝑜𝑔(𝑛)൯, which in 
BMRI applications results in execution times of 35 seconds 
to 1 minute per image when executed on a conventional 
PC[6,7]. An alternate way is to generate  ൫𝑘௫, 𝑘௬൯ using a 
look-up table approach. This kind of interpolation 
approaches are used to determine intermediate values within 
the data points in an evenly sampled interpolation grid. Due 
to the distance between adjacent samples, this approach can 
be applied on 𝑆௖(𝜔, 𝜃). In order to generate I(kx ,ky), first 
lets define the discrete NxN frequency space (kx ,ky) such as: 
 

 𝑘௬ = 𝑘௫ ≜ {𝑛𝜋/𝑅| 𝑛 ∈ 𝑍 𝑎𝑛𝑑 − 𝑁 ≤ 𝑛 ≤ 𝑁} .    (7)  
 
Next, we calculate the functions 𝑘௥(𝑝, 𝑞) and 𝜗(𝑝, 𝑞)  as 
follows: 

               𝑘௥(𝑝, 𝑞) = ඥ𝑝ଶ + 𝑞ଶ                  
         

𝜗(𝑝, 𝑞)
⎩⎪⎪⎨
⎪⎪⎧ 𝑡𝑎𝑛ିଵ(𝑞 𝑝⁄ )               𝑖𝑓 𝑝 > 0 𝑎𝑛𝑑 𝑞 ≥ 0𝑡𝑎𝑛ିଵ(𝑞 𝑝⁄ ) + 2𝜋     𝑖𝑓 𝑝 < 0 𝑎𝑛𝑑 𝑞 ≥ 0  𝑡𝑎𝑛ିଵ(𝑞 𝑝⁄ ) + 𝜋       𝑖𝑓 𝑝 < 0                        గଶ                                  𝑖𝑓 𝑝 = 0 𝑎𝑛𝑑 𝑞 > 0ଷగଶ                                 𝑖𝑓 𝑝 = 0 𝑎𝑛𝑑 𝑞 < 0

   (8) 

∀(𝑝, 𝑞) ∈ (𝑘௫, 𝑘௬). 
 
    At this point, we can define the auxiliary discrete 
frequency space (𝜌, 𝜑) where 𝜌 and 𝜑 are the ranges of 𝑘௥(𝑝, 𝑞)  and 𝜗(𝑝, 𝑞) respectively. Now the values of  𝑆௖(𝜔, 𝜃) at the points contained in (𝜌, 𝜑) can be calculated 
by using a conventional interpolation approach. This set of 
values will be denoted as 𝑆௖(𝜌, 𝜑). Next, we can map 𝑆௖(𝜌, 𝜑) into  ൫𝑘௫, 𝑘௬൯ using the following function: 
 𝐼൫𝛼(𝑢, 𝑣), 𝛽(𝑢, 𝑣)൯ = 𝑆௖(𝑢, 𝑣)         (9) 
where: 𝛼(𝑢, 𝑣) = 𝑢 cos 𝑣 𝛽(𝑢, 𝑣) = 𝑢 sin 𝑣                           (10) ∀(𝑢, 𝑣) ∈ (𝜌, 𝜑). 

 
Since (10) is the inverse of the mapping process described 
in (8), and both relations have a one to one relation, it is 
not difficult to prove that the 𝛼(𝑢, 𝑣) and 𝛽(𝑢, 𝑣) map the 
points in (𝜌, 𝜑) back into ൫𝑘௫, 𝑘௬൯, therefore 𝐼൫𝛼(𝑢, 𝑣), 𝛽(𝑢, 𝑣)൯ can be also regarded as  𝐼൫𝑘௫, 𝑘௬൯ and it 
does not have any gaps within its spectral support 
band. Therefore the relation expressed in (9) results in an 

evenly sampled spectrum with no gaps in the support band. 
Finally, in order to visualize the reconstructed data in the 
spatial domain a 2D inverse FFT is applied to 𝐼൫𝑘௫, 𝑘௬൯. The 
result of this process is the reconstructed image 𝑖(𝑥, 𝑦). 
 

IV. RESULTS 
 

In order to asses the capabilities of the proposed method, 
a set of simulated data was produced using a radar simulator 
developed by the authors [8].  This data was generated using 
a simulated pattern of 72 scan locations with a 0.4m radius 
in the x-y plane.  MRI data sets were used to generate the 
numeric phantoms. These data sets were obtained from the 
University of Wisconsin-Madison online phantom 
repository. The dielectric properties of the breast regions 
contained in the MRI data sets were determined using the 
values published in [5]. A Stepped Frequency Continuous 
Wave (SFCW) was used as the irradiated signal. The SCFW 
had a bandwidth of 11 GHz with a center frequency of 6.5 
GHz.  The proposed method was implemented in a desktop 
PC with a 2.6 Ghz Phenom 9950 Quad CPU and 8 GB 
RAM. The proposed technique was implemented, tested and 
validated using a MATLAB development environment. The 
performance of the proposed method was quantitatively 
measured using two metrics, Signal to Noise Ratio (SNR) 
and conditional entropy. The SNR of the reconstructed 
images technique was calculated as follows: 

 𝑆𝑁𝑅 = 20 ∙ 𝑙𝑜𝑔ଵ଴ ቌ∑
=

Γ
T

j
dBj T

1
3, / 𝜎௪൘ ቍ     (11) 

 
where  dBj 3,Γ  is the magnitude of the 3dB point of the jth 
target signature in the image reconstructed by  the proposed 
algorithm and wσ  is the standard deviation of the 
background noise. In this paper, the reflections from the 
fibroglandular tissue areas were not considered as noise due 
to the fact that these regions can provide anatomical 
information for post-reconstruction processing, i.e. image 
fusion. In each experiment, two data sets of the numeric 
phantom, one with a tumor and another without it, were 
generated. This was done to better visualize the effect of the 
tumor responses in the reconstructed images.  To properly 
compare the performance of the proposed method with 
respect to current wavefront reconstruction approaches, 
which use a Qhull based interpolation procedure, the data 
set containing the tumor was also reconstructed using the 
technique proposed in [6]. A linear interpolation kernel was 
used in all the experiments. 

    The results of an initial experiment using the proposed 
method can be seen in figure 2. In this experiment, a tumor 
with a diameter of 5mm was inserted at (-0.02,-0.017) m. In 
order to have a better visualization of the reconstructed 
target responses, the surface reflections were removed using 
the method used by the authors in [6]. The red circle denotes 
the location of the removed skin reflections.  A second 
numerical setup and its corresponding reconstructed images 
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are shown in figure 3.  For this experiment, a tumor with a 
diameter of 5mm was inserted at (0.0125,-0.0025) m. Notice 
how in both cases the magnitude of the sidelobes is smaller 
than the image focused using the conventional wavefront 
reconstruction approach resulting in increased SNR values.  

 

 
         a)                                           b) 

 
        c)                                           d) 

Figure 2. a) MRI model, b) Reconstructed image of the 
tumor-free data set, c) Reconstructed image obtained using 
the proposed approach, d) Reconstructed image using the 
conventional wavefront reconstruction approach. The tumor 
responses are encircled with an orange contour. 
 

 
                       a)                                           b) 

 
        c)                                           d) 

Figure 3. a) MRI model, b) Reconstructed image of the 
tumor-free data set, c) Reconstructed image obtained using 
the proposed approach, d) Reconstructed image using the 
conventional wavefront reconstruction approach. The tumor 
responses are encircled with an orange contour. 
The resulting SNR and conditional entropy values obtained 
in each experiment are summarized in Table 1. Finally, the 
computational cost of the proposed technique was evaluated 

by calculating the average execution time 30 simulated data 
sets. The average execution time was 1.25 seconds, 
compared to 35.4 seconds needed by the conventional 
wavefront reconstruction approach. 
 

TABLE I 
SNR and Conditional Entropy value comparison in each 

experiment. 
 
Technique/Experiment SNR(dB) Cond. Entropy 

(bits) 
Conv. 
Wavefront 

1 5.94 4.84 
2 9.84 4.63 

Proposed 
Approach 

1 6.04 1.58 
2 9.97 1.58 

 
  V. CONCLUSION 

 
A novel technique for 2D BMRI reconstruction was 

presented in this paper. Compared to conventional 
wavefront reconstruction techniques, the proposed approach 
uses a novel interpolation approach that results in shorter 
execution times and increased signal to noise ratio values 
and comparable focal quality. The proposed method yielded 
promising results when applied to simulated data generated 
from MRI data sets. 
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