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Abstract— We develop a novel simultaneous reconstruction
and registration algorithm for limited view transmission to-
mography. We derive a cost function using Bayesian proba-
bility theory, and propose a similarity metric based on the
explicit modeling of the joint histogram as a sum of bivariate
clusters. The resulting algorithm shows a robust mitigation of
the data insufficiency problem in limited view tomography.
To our knowledge, our work represents the first attempt to
incorporate non-registered, multimodal anatomical priors into
limited view transmission tomography by using joint histogram
based similarity measures.

I. INTRODUCTION

Limited view transmission tomography is used in a myriad

of industrial as well as clinical applications [5]. It is com-

monly motivated by geometric constraints and limitations

on acquisition time and/or patient radiation dose. However,

limited view transmission tomography suffers from the lim-

itation that its reconstructions are fundamentally underde-

fined. This can be understood in terms of the Fourier Slice

Theorem [6], which reveals that large swathes of the object’s

Fourier space remain unmeasured. In this work, we estimate

the unsampled information by incorporating an anatomical

prior into the reconstruction process.

The use of anatomical priors has been considered previ-

ously in emission as well as transmission tomography, where

the majority of studies has focused on intensity difference

based similarity metrics for monomodal regularization. Ex-

amples include the incorporation of planning CTs to regular-

ize intraoperative tomosynthesis reconstructions [1] in trans-

mission tomography, and the simulation of template PET

volumes from CT or MRI priors [7] in emission tomography.

In these studies it was assumed that the anatomical prior and

the object to be reconstructed were aligned a priori. Only a

few studies have investigated the use of information theoretic

similarity measures for multimodal regularization such as

mutual information [10] and joint entropy [9], [11], and this

only in the field of emission tomography. Mutual information

was considered first due to its success in image registration,

but it was later demonstrated by Nuyts [9] that joint entropy

introduces less bias into the reconstruction and may therefore

be more appropriate. In our previous work [13], we built on

Nuyts’ results and applied joint entropy (JE) regularization to
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limited view transmisson tomography with a priori registered

anatomical priors. To our knowledge, this was the first study

to do so. In [13], we also identified JE’s vulnerability to local

optima when used in limited view tomography and proposed

two approximate schemes to increase robustness. The first

was to minimize the joint entropy of a single bivariate

Gaussian fit to the joint histogram during the reconstruction

process; the second was to explicitly model and optimize the

joint histogram as the sum of a limited number of bivariate

probability density distributions. The performance of the first

approach was explored in [13] itself, and that of the second

in [12], in both cases for pre-registered priors. Since then,

we have extended the first approach to the case of non-

registered priors and explored its performance in [14]. In

the current work, we extend the second approach, i.e. multi-

cluster modeling, to the case of non-registered priors as well,

and propose a simultaneous reconstruction and registration

(SRR) algorithm that can accommodate monomodal as well

as multimodal anatomical priors.

II. METHODS

Our experiments in [13] revealed that the JE prior is

sensitive to local optima when applied to limited view

transmission tomography. In the space of the joint histogram,

trapping in local optima amounted to a breaking up of

the joint histogram into many small clusters. However, if

it is known a priori that the ground truth joint histogram

contains only a limited number of clusters, the problem can

be mitigated by explicitly modelling it as such. This has the

effect of reducing the possible number of local optima in

the cost function. Here we extend the framework to non-

registered priors, and illustrate the method using bivariate

Gaussian clusters.

A. Cost function

Our objective is to optimize the joint posterior probability

P (x, p, θ, δ|r,B), where x is the attenuation map, p is the

hidden Markov measure field proposed by Marroquin [8],

θ is a vector containing the parameters of each bivariate

Gaussian, δ is the deformation field, r is the observed

projection data (photon counts), and B is the anatomical

prior. The p field is essentially a vector field giving the

probability of each pixel xj belonging to the cluster k. The

deformation field δ is a dense vector field defined at every

pixel xj , and gives the displacement from each xj to the

corresponding point in B. The coordinates of the pixels xj
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and Bj are defined in a common reference frame, and are

stored as a dense vector field ρ. Hence the intensity of the

prior B at the point corresponding to the pixel xj is given

by B(ρj + δj). In the remainder of this paper we use the

shorthand notation B∗

j = B(ρj + δj), where the star is

used to differentiate the interpolated intensity B(ρj + δj)
from the pixel intensity Bj = B(ρj). The interpolation of

the prior B can be achieved using many different methods,

such as linear, quadratic, cubic, or B-spline interpolation. In

this study, we use quadratic interpolation as a compromise

between accuracy and ease of implementation.

Using Bayes’ rule and the definition of conditional prob-

ability, the posterior probability can be decomposed as

P (x, p, θ, δ|r,B) =

1

Z
P (r|x)P (B|x, p, θ, δ)P (x)P (p)P (θ)P (δ) (1)

where we have assumed a uniform distribution for the

projection data r, and P (r|B, x, p, θ, δ) = P (r|x) since the

projection data depends only on the object’s attenuation map.

The data likelihood term P (r|x) is modeled by the

Poisson distribution, and is given by log P (r|x) =
∑M

i=1
hi(li) + constant, where each hi(li) is a concave

function. In transmission tomography, they are given by

hi(li) = −
(

r0e
−li + bi

)

+ ri log
(

r0e
−li + bi

)

where li =
∑N

j=1
aijxj . The integer N is the number of pixels in the

discretized attenuation map x, aij is the length of traversal

of the ith ray through the jth pixel, ri is the photon count

observed by the ith detector, r0,i is the number of photons

leaving the source for the ith ray, and bi accounts for scatter

events.

The remaining terms in Eqn. 1 are independent of the

projection data, pertaining solely to the registration of x

and B, and the modeling of x in the image as well as

joint histogram space. Assuming conditional independence

of the pixels, we can express the conditional probability

P (B|x, p, θ, δ) as

P (B|x, p, θ, δ) =
N
∏

j=1

K
∑

k=1

P (B∗

j |fj = k, xj , θk, δj)pj,k (2)

where K is the number of postulated clusters in the joint

histogram, and the cluster labels f have been marginalized

out as described by Marroquin [8]. The kth entry of the

K-dimensional vector pj gives the marginal probability that

the jth pixel of x belongs to the kth cluster. As noted

by Marroquin, the hidden measure field has the advantage

that superfluous clusters k are automatically eliminated,

resulting in a robustness to overdeclaration of the number K.

Assuming bivariate Gaussian distributions for each cluster,

we have

P (B∗

j |fj = k, xj , θk, δj) = vj,k

=
1

2π|Σk|1/2
exp

(

−
1

2
(Xj − Mk)T Σ−1

k (Xj − Mk)

)

(3)

where Xj = [xj , B
∗

j ]T , Mk = [µx,k, µB,k]T and Σk is the

covariance matrix of the kth Gaussian cluster in the joint

histogram. The means µx,k and µB,k give the coordinates

of the kth Gaussian cluster in the joint histogram. The kth

entry of the vector vj therefore specifies the conditional

probability that the jth pixel belongs to the kth cluster,

i.e. given the current estimate of the pixel intensity xj , the

displacement vector δj , and the cluster parameters θ. Note

that while we have chosen a Gaussian probability density

function to illustrate the method, other bivariate probability

density functions could be specified as well.

Next, we impose a spatial coherence constraint on the

image x using a Markov Random Field (MRF) distribution.

This is achieved using the Gibbsian penalty function

P (x) =
1

Zx
exp



−

N
∑

j=1

∑

n∈Nj

wjnφ(xj − xn)



 (4)

where Zx is a normalization constant, n indexes the pixels

within each neighborhood Nj centered on the jth pixel,

the convex function φ(t) penalizes the difference between

adjacent pixels of x, and the weights wjn represent the clique

weights. In this study we have used an eight nearest neighbor

model, and found that a Huber function [4] for φ(t) gave

desirable results. In our initial experiments, we assumed a

uniform distrition for P (x) to evaluate the performance of

the regularizing term P (B|x, p, θ, δ) in isolation, and found

that such regularization is already highly effective. However,

we also found that adding the Huber prior on x increases

the robustness and accelerates the convergence rate of the

algorithm (see section III).

The prior probability distribution P (p) is made subject to

a similar spatial coherence constraint. More specifically, we

vectorize the Gibbsian penalty function as follows

P (p) =
1

Zp
exp



−

N
∑

j=1

∑

n∈Nj

(

wjn

K
∑

k=1

φ(pj,k − pn,k)

)





(5)

where the meaning of the variables is analogous to that in

Eqn. 4. The prior probability distribution P (θ), in turn, is

assumed to be uniform. In practice, a reliable initial estimate

of the cluster parameters θ is available in many transmission

tomography applications. Hence either fixed values or strong

priors could be used to constrain the values of θ. In our

experiments we assumed initial guesses for θ that were

accurate to within 15%, in which case the algorithm proved

to be stable. We plan to further evaluate the algorithm’s

robustness to the initial guess of θ in future work.

Finally, to achieve spatial smoothness for the deformation

field δ, we use a MRF prior defined as

P (δ) =
1

Zδ
exp

[

−
∑

p

∑

n∈Nc

wcn

D
∑

d=1

φ(δc,d − δn,d)

]

(6)

where Nc represents the neighborhood centered on the cth

control point (see section II-B.4), and D is the number of

spatial dimensions of the deformation map. In this prelimi-

nary study, we present results on a 2D phantom. All other

variables are analogous to those used in Eqn. 4, with the

exception that we here used a quadratic function for φ(t).
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B. Optimization

The posterior probability given in Eqn. 1 can be optimized

by maximizing its logarithm, yielding the objective function

ψ(x, p, θ, δ) =
M
∑

i=1

hi(li) + β

N
∑

j=1

log

(

K
∑

k=1

vj,kpj,k

)

−

γ
∑

C

VC(x) − ω
∑

C

VC(p) − η
∑

C

VC(δ) (7)

where constant terms have been dropped and hyper-

parameters have been added to control the strength

of each term. Note also that the optimization prob-

lem is subject to the nonnegativity constraint for x,

and the simplex constraint for p: pj ∈ SK =
{

pj ∈ RK :
∑K

k=1
pj,k = 1, pj,k ≥ 0, k = 1, ..., K

}

. In this

study, we update the variables x, p, θ, δ sequentially, each

time holding the other variables constant. The proposed

algorithm cycles through each of these four variables until

convergence is reached.

1) x-update: Here the cost function is given by ψ(x) =
∑M

i=1
hi(li) + β

∑N
j=1

log
(

∑K
k=1

vj,kpj,k

)

− γ
∑

C VC(x).

The data match term can be minorized by parabolas of

an optimal curvature [3]. Similarly, the second term can

be minorized by a sum of quadratics qj(x), where each

qj(x) has the maximum curvature provided by any of the

quadratics log (vj,kpj,k), where k = 1, ..., K.1 This satisfies

the conditions for monotonicity, but also creates an unwanted

vulnerability to local optima. The problem can be reduced

by at every pixel j approximating the Gaussian mixture

model
∑K

k=1
vj,kpj,k by a single Gaussian of the same

first and second moments [15]. This approximation becomes

progressively more accurate as the weighted sum of Gaussian

becomes dominated by one of the component Gaussians. The

third term, which consists of a sum of concave functions,

was minorized using quadratic surrogates as well. Summed

together with the surrogates of the first and second terms, this

yields a fully quadratic surrogate to the cost function in x. In

the final implementation, the exact and approximate surro-

gates of the second term were alternated, each time rejecting

the approximate surrogate update if it yielded a decrease

of the cost function. As confirmed in our experiments (not

reported here), this yielded an update scheme that was both

monotonic and robust to local optima. The update steps were

performed using a steepest ascent scheme.

Note that defining the deformation field δ on x, rather

than B, makes the reconstruction of x easier since the data

likelihood term is defined in terms of the pixel centers xj ,

and not values in between. If the correspondence map were

to link the given pixel values Bj to values of x positioned

in between the regular pixel grid, we would need to consider

details of the image interpolation model when computing the

updates for xj .

1Note that this is a conservative choice for the curvature of the surrogates.
Computing an optimal curvature is however analytically intractable due to

the form of the Gaussian mixture model
∑K

k=1
vj,kpj,k .

2) p-update: In this step, the cost function reduces to

ψ(p) = β
∑N

j=1
log

(

∑K
k=1

vj,kpj,k

)

− ω
∑

C VC(p). Note

that this cost function is entirely concave in p, and bounded

only by the simplex constraint on each vector pj . No

surrogates are used for the optimization of p. The direction

of steepest ascent within the simplex plane is determined,

and the vector field p parameterized as p = pq + λp′, where

q is the number of the current iteration, and p′ the search

direction at that iteration. Taking the first derivative of the

resulting function in λ yields a quadratic equation. Hence

setting the derivative to zero yields two solutions for λ. One

gives a complex value for the cost function in p; the other a

real value. Of course, we are each time interested in the latter.

The resulting update step is guaranteed to give a monotonic

increase in the cost function.

3) θ-update: Here we maximize the function ψ(θ) =
∑N

j=1
log(vj ·pj) over θ. We used the Nelder-Mead Simplex

Method, available as fminsearch in Matlab.

4) δ-update: Keeping x, p, and θ constant, the cost

function reduces to ψ(δ) = β
∑N

j=1
log

(

∑K
k=1

vj,kpj,k

)

−

η
∑

C VC(δ), where the first term is the similarity metric,

and the second the smoothness penalty. As indicated above,

the number of degrees of freedom was reduced by defining

a coarse sub-grid of control points on the image x. As

this work is in its preliminary stages, we used an off-the-

shelf MRF-registration algorithm to update the position of

the control points, and hence δ. More specifically, we used

an implementation made available by Glocker [2], which

uses the fastPD algorithm to optimize MRF-formulated

registration metrics using a B-spline deformation model2.

Glocker’s implementation provides a range of similarity

metrics, though not the similarity metric derived in Eqn. 2.

As a result, we resorted to a standard similarity metric (in

this case normalized cross correlation) to perform the δ. This

still allowed us to explore the potential of our simultaneous

reconstruction and registration approach. Our main objective

is to assess the effectiveness of the multiple cluster approx-

imation in regularizing the image reconstruction, and less

so in serving as a registration similarity metric. Hence we

believe that the use of an alternative similarity metric for

the registration step is an acceptable first step towards the

development of our SRR algorithm. In our preliminary inves-

tigation, the current algorithm converged in all experiments

(see section III). We intend to investigate the performance of

the proposed similarity metric in the registration component

of the algorithm as part of future work.

III. RESULTS

In Fig. 1 we compare the performance of SRR to that of

two standard statistical algorithms, namely the unregularized

maximum likelihood (ML) algorithm and the penalized ML

algorithm with a Huber image prior. Illustrative reconstruc-

tions are shown using 16 noiseless projections distributed

evenly over an angular range of ±30◦ from the vertical direc-

tion. All reconstructions were initialized with a zero image

2http://www.mrf-registration.net/.
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Fig. 1. Top row: phantom, registered prior, nonregistered prior, ground
truth joint pdf of phantom and registered prior. The joint pdf contains three
clusters (bottom left, center right, top right). Bottom row: unregularized
ML, ML with Huber prior on x, SRR without Huber prior on x, SRR with
Huber prior on x.

for x, and, where applicable, with a uniform distribution for

p, an initial guess within 15% of the ground truth values for

θ, and a zero deformation field δ. The phantom and registered

as well as non-registered prior are shown in the top row of

Fig. 1. Of course, the ground truth registration of the prior

is not known to the algorithm. Note that the prior does not

contain all of the regions present in the phantom, as would

be the case in many real applications. Our method captures

such regions in a natural way by modeling them as separate

clusters in the joint histogram. The image size was 200x200

for all examples. Compared to the standard ML algorithms,

which do not make use of the anatomical prior, the SRR

algorithm shows a greatly improved contrast for all regions,

even those that were not present in the prior. Note that while

SRR already improves the quality of reconstruction when

using a uniform prior distribution P (x) (bottom row, third

column), its robustness is increased by using a Huber prior

for P (x) (bottom row, fourth column). We found that this

also increases the convergence rate of the algorithm. Similar

results were obtained on a number of different piecewise

constant 2D phantoms. The x- and p updates consisted of 50

and 10 steepest ascent steps, respectively, corresponding to

approximately 11 and 2 seconds, respectively. The θ updates

using the Nelder-Mead Simplex Method required approxi-

mately 8 seconds each. Finally, the registration step con-

sisted of 5 iterations of Glocker’s fastPD algorithm, which

completed in approximately 1 second. Hence the run time

per total iteration of the SRR algorithm was approximately

22 seconds. No further attempt was made to accelerate the

code. The algorithm converged in approximately 3 update

cycles.

IV. CONCLUSIONS AND FUTURE WORK

We proposed a simultaneous reconstruction and regis-

tration algorithm that is capable of mitigating the data

insufficiency problem of limited view tomography. We de-

rived a cost function using Bayesian probability theory, and

proposed a similarity metric based on the explicit modeling

of the joint histogram as a sum of bivariate clusters. This

proposal followed our previous finding that standard informa-

tion theoretic similarity metrics are ill-suited for regularizing

limited view tomographic reconstructions. So far, we have

evaluated the potential of the proposed similarity metric

only for regularizing the image reconstruction step, and used

an off-the-shelf algorithm with a standard similarity metric

(NCC) for the registration step. It is our intention to test the

performance of our similarity metric in the registration step at

our earliest opportunity. Adherence to a single cost function

as given in Eqn. 7 would make a formal characterization

of the convergence behavior of the algorithm easier. For

example, convergence to either a local or global optimum

could be guaranteed by virtue of the boundedness of the cost

function when only monotonic updates of the cost function

are allowed. Further, we plan to investigate the robustness of

the proposed SRR algorithm to measurement noise, over- or

underdeclaration of the number of clusters K, registration

errors, and sensitivity to variations in the cost function’s

hyperparameters. Finally, we note that the proposed frame-

work could also be used in the anatomical regularization of

hybrid emission tomography applications such as PET/MRI

and PET/CT, where the registration component could be used

to undo the effects of breathing or other patient motion.
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