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Abstract— Bayesian methods have been widely applied to
the ill-posed problem of image reconstruction. Typically the
prior information of the objective image is needed to produce
reasonable reconstructions. In this paper, we propose a novel
generalized Gibbs prior (GG-Prior), which exploits the basic
affinity structure information in an image. The motivation for
using the GG-Prior is that it has been shown to suppress
noise effectively while capturing sharp edges without oscilla-
tions. This feature makes it particularly attractive for those
applications of Positron Emission Tomographic (PET) where
the objective is to identify the shape of objects (e.g.tumors)
that are distinguished from the background by sharp edges.
We show that the standard paraboloidal surrogate coordinate
ascent (PSCA) algorithm can be modified to incorporate the
GG-Prior using a local linearized scheme in each iteration
process. The proposed GG-Prior MAP reconstruction algorithm
based on PSCA algorithm has been tested on simulated, real
phantom data. Comparisons the GG-Prior model with other
existing prior model clearly demonstrate that the proposed GG-
Prior performs better in lowering the noise, and preserving the
edge and detail in the image.

I. INTRODUCTION

Due to the low counting rates and the limited acqui-

sition time, clinical positron emission tomography (PET)

data are usually significantly affected by Poisson noise.

Reconstructing the PET images is essentially an ill-posed

problem [1]. Up to now, many reconstruction strategies have

been proposed to address this problem. Bayesian estimation,

or maximum a posteriori (MAP) estimation as a statistical

approach for incorporating prior information through the

choice of a prior distribution for a random field, has already

been proved to be an effective solution to the ill-posed

PET reconstruction problem[3]. Based on Bayesian theory,

a generic contextual constraint can be transformed into

some kind of prior information to regularize the solution

of the original ill-posed reconstruction problem. Therefore,

the regularization by such prior information can be imposed

on image reconstruction to suppress noise much more effec-

tively. A common Bayesian prior is the Gibbs distribution of

the form

P (λ) =
1

Z
exp (−βU(λ)) =

1

Z
exp



−β
∑

j

U(λ, j)



 (1)

where Z is a normalizing constant, U(λ) , as a regularization

term, is prior energy function, U(λ, j) is any function of a
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local group of pixel point j. β is a constant that specifies

the relative strength of the prior. The specific choice of

prior distribution for λ is, of course, a critical component

in Bayesian reconstruction.

Usually, U(λ, j) is chosen as a shift-invariant function that

penalizes the differences between neighboring pixels. How-

ever, since the prior is shift-invariant while the likelihood is

not, the MAP image, which represents the position dependent

bias and resolution, can not usually produce satisfactory

results. In addition, images of real world may not be globally

smooth and noisy edges intensities may often vary abruptly.

Inspired by some recent studies on the image denoising

and segmentation by nonlocal averages [4]–[6], We pro-

pose a family of generalized Gibbs priors (GG-Priors) to

PET reconstruction. The GG-Priors can exploit the nonlo-

cal information available in the objective image, not only

density difference information between individual pixels but

also nonlocal connectivity and continuity information in the

objective image λ. The GG-Priors can greatly improve the

reconstruction quality.

II. PET STATISTICAL MODEL

We focus on the linear Poisson statistical model that has

been used extensively for emission computed tomography,

including PET and SPECT. Assuming usual Poisson dis-

tribution, the measurement model for emission scans is as

follows[7]

yi ∼ Poisson{ci

M
∑

j

aijλj + ri}, i = 1, 2, . . . , N (2)

where yi is the number of photons counted in the ith bin, N

is the number of detector pairs, λj is the activity at the jth

pixel, M is the number of unknown image pixels, r i repre-

sents the total detected random and scattered event counts for

detector pair i in emission scan, and A = {aij} is the system

matrix, aij is the geometric probability that an emission

photon from image pixel j is detected by the detector pair i

in ideal conditions. ci represents the incorporate calibration

factors of scan time, detector efficiencies, attenuation factors

and possibly dead time correction factors for the detector pair

i. The goal is to estimate the unknown activity distribution

image λ = [λ1, λ2, . . . , λM ]′ based on the measurements

y = [y1, y2, . . . , yN ]′ with A and r = [r1, r2, . . . , rN ]′ being

known where ‘′’ denotes the matrix transpose.

Then, the corresponding log-likelihood function can be
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written, ignoring constants independent of the λ, as follows

L(y, λ) =

N
∑

i

hi([Aλ]i) (3)

where hi(l) = yi log(cil+ri)−(cil+ri) and li(λ) = [Aλ]i =
∑M

j aijλj .

Therefore the mathematical formulation of PET is the

following maximization problem:

max
λ

L(y, λ) (4)

However, this problem is ill-posed and solving this alone

will produce oscillatory solutions. This is why prior infor-

mation is needed.

III. GENERALIZED GIBBS PRIORS

Motivated by the nonlocal averages in the image denoising

and segmentation by nonlocal averages [4]–[6], we propose

a family of generalized Gibbs priors for Bayesian image

reconstruction.

The construction of the proposed GG-Priors is generalized

as follows

UGG(λ) =
1

2

∑

j

∑

k∈Nj

wkjφα(λk − λj) (5)

wkj = exp(
−|k − j|2

2σ2
) exp(

−D(k, j)

h2
) (6)

D(k, j) = ‖ λ(Vk) − λ(Vj) ‖
2

2
(7)

λ(Vk) = {λ(l) : l ∈ Vk} (8)

λ(Vj) = {λ(l) : l ∈ Vj} (9)

where Nj is a large search neighborhood set to incorpo-

rate geometrical configuration information in the image, the

weight wkj , which reflects the degree of connectivity affinity

between pixel k and pixel j, is defined as a decreasing

function of the similarity of the two neighborhoods V k and

Vj (named similarity neighborhoods) centered on pixel k and

pixel j, respectively. The parameter σ controls how much

one wishes to penalize distant of two grid points in the

weight, while h controls how much one wishes to penalize

similarity of the two patches. Larger σ allows one make use

of more remote information, while larger h gives results with

sharper features. Fig.1 shows the illustration of weight wkj

computation.

Choices of weight wkj and similarity function D(k, j)
in (6) can be made as done in [6]. In our experiments,

we simply measure the L2 distance of two cubical patches

without doing Gaussian smoothing first. Hence the direct

L2 distance gives a good measurement of similarity, which

saves computation time. The function φα should satisfy (i)

φα ∈ C1, and (ii) φα is strongly convex on any bounded in-

terval.Examples of edge-preserving functions φα that satisfy

kV

jV

j

jN

kV

k

k

Fig. 1. Illustration of weight wkj computation

the two requirements are:

φα = |t|α, 1 < α ≤ 2, (10)

φα = 1 +
|t|

α
− log(1 +

|t|

α
), α > 0, (11)

φα = log(cosh(
|t|

α
)), α > 0, (12)

φα =
√

α + t2, α > 0. (13)

see[8].

In our experiments we only focused on PET reconstruction

based on (10) with φα(s) = |s| and s2. If we set φα(s) = s2,

this GG-prior may be similar to the nonlocal Gibbs Prior[9].

IV. GENERALIZED GIBBS PRIORS BASED BINARY

OPTIMAL RECONSTRUCTION ALGORITHM

With the analysis of Section 3, choosing the GG-Prior, the

PET image λ based on the MAP estimation can be obtained

through an iterative maximization of the cost function Φ(λ)

λ̂ = argmax
λ≥0

Φ(λ) (14)

Φ(λ) = L(y, λ) − βUGG(λ) (15)

But, (6)-(9) show that the weight term wkj is the function

of objective image λ, which can keep UGG neither quadratic

nor convex. Thus, we propose the following binary optimal

algorithm to solve the optimization.

After setting an initial estimate λ̂ for the first iteration,

we update weights wkj and the image λ alternatively by

the following binary optimal strategy in each iteration phase

until convergence.

• Weight update. When λ̂ is fixed, compute wkj using

(6)-(9),

• Image update. For the second stage of the maximiza-

tion, we hold wkj fixed at its previous estimate and

maximize Φ(λ) with regard to λ.

Because the Hessian Matrix of L(y, λ) is strictly negative

definite[7] and according (6)-(9), we get

0 < wkj(λ̂) = exp(−
|k − j|2

2σ2
) exp(−

D(k, j)

h2
) ≤ 1. (16)
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Fig. 2. The Shepp-Logan phantom

Considering the ensured convexity for φα in (5) and the

positivity for penalty parameter β, we can reach a conclusion

that, given the computed value for wkj(λ̂), the second deriva-

tives of Φ(λ) in (15) is definitely concave in each iteration.

Thus based on the theory of local linearization[10], we

can monotonically maximize the posterior energy function

Φ(λ) using iterative algorithms such as the paraboloidal

surrogate coordinate ascent (PSCA) iterative algorithm[11].

In our study, the standard PSCA algorithm was modified to

incorporate the GG-Prior using a local linearized scheme in

each iteration process.

V. EXPERIMENTATION AND ANALYSIS

In this section, we present some experiments for PET

reconstruction with simulated and real phantom data.

A. Emission Reconstruction of Simulated Data

In this experiment, the synthetic simulated phantom data

with 128 × 128 square pixels was used for emission PET

reconstruction. a Shepp-Logan head phantom with pixel

values from 0 to 8, and the total counts amount to 3×10 6 was

designed as shown in Fig.2. The simulated sinogram data

for the Shepp-Logan phantom was Poisson distributed and

the percentages of simulated delayed coincidences r i factor

(scatter effects are ignored) was set to be 10%. The c i factor

was generated using pseudo-random log-normal variates with

a standard deviation of 0.3 to account for detector efficiency

variations. Generated by the ASPIRE software system [12],

the transition probability matrixe used in the reconstructions

of the Shepp-Logan phantom corresponded to parallel strip-

integral geometry with 128 radial samples and 128 angular

samples distributed uniformly over 180 degrees. The code

was run on a PC with Intel(R) Pentium(R) 4 3.16GHz

3.00GHz processor and 2GB of memory.

FBP reconstruction and Bayesian reconstructions based on

the Huber prior (Huber-Prior), the proposed GG-Prior were

performed, respectively. For FBP method, we chose the ramp

filter with cutoff frequency equal to the Nyquist frequency.

We did not consider methods for choosing the penalty

parameter β, decay parameter h and threshold parameter δ

in either algorithm, but rather studied the results obtained

by a broad range of parameter values by hand to give

the reconstructions in terms of maximum of signal-to-noise

(a) (b)

(c) (d)

Fig. 3. FBP reconstruction and Huber-Prior and GG-Priors based
Bayesian reconstructions in the Shepp-Logan phantoms study. (a) is the
FBP reconstruction, (b)is the Huber-Prior reconstruction, (c)is the GG-Prior
reconstruction with (φα = t2), and (d)is the GG-Prior reconstruction with
(φα = |t|)

ratio(SNR), which was computed by (17)

SNR = 10 log
10

(

∑

i,j(λ(i, j) − λ̄)2
∑

i,j(λ(i, j) − λphantom(i, j))2
) (17)

where λ(i, j), λ̄ and λphantom(i, j) denote the reconstructed

image, the mean of the reconstructed image λ and the

original true phantom image, respectively.

Fig.3 shows the reconstructed images using the Shepp-

Logan phantoms data with FBP and different priors. For the

PACS based GG-Prior algorithm the search neighborhood

Nj in (5) was set to be 21 × 21 neighborhood and the two

similarity neighborhoods Vk and Vj in (7) were both set to

7×7 neighborhood. For the reconstruction using the Huber-

Prior, the 8-neighborhood was used. The values of h for the

GG-Prior and δ for the Huber-Prior were fixed to 0.8 and

0.2, respectively, β was set to 1.40 in all the reconstructions.

Fig.3.(a)(b)(c)(d) are the reconstructed images using the FBP

with the ramp filter,the Huber-Prior, the proposed the GG-

Prior reconstruction with (φα = t2), and the GG-Prior

reconstruction with (φα = |t|), respectively.

Table I displays SNR comparisons with regards to Shepp-

Logan phantoms data in Fig.3 for above reconstructions. It

indicates that the images from the reconstructions using the

proposed GG-Priors reconstructed images with much higher

SNRs than other reconstruction methods.

B. Emission Reconstruction of Real Phantom Data

In this study, a real hotlesion phantom emission scan data

was used. 192 radial samples and 192 angular samples over
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TABLE I

SNRS FOR THE RECONSTRUCTED IMAGES IN FIG.3

SNRs(dB) Shepp-Logan phantom

FBP 11.63

Huber-Prior 15.14

GG-Prior(φα = t2) 16.33

GG-Prior(φα = |t|) 16.91

180 degrees. The sinogram was precorrected for scatter,

attenuation and geometric arc correction etc. The 5th 2D

slice data of the total 9 slices was used. The objective image

consisted of 128×128 pixels with 0.356cm pixel resolution.

The total counts amounted to 4.4 × 106. All ci factors and

ri factors were assumed to be ones and zeros, respectively.

The reconstructed image from the FBP method was used

as the initial image in the iterative algorithms. In order to test

the GG-priors, we compared it with the Huber-Prior. Iteration

numbers for all Bayesian reconstructions were set to be 50.

The PSCA based GG-Prior algorithm was also used here.

Fig.4 shows the reconstructed results from different meth-

ods with different parameter settings. For all of Bayesian

reconstruction problems, we manually selected parameters β,

δ and h to cover a range of parameter settings. Obviously,

when suitable parameter values are set, the reconstructions

using the proposed GG-Priors outperformed the FBP re-

construction and reconstructions using the Huber-Prior in

terms of noise suppression and edge preserving, and able

to reconstruct more appealing emission images.

VI. CONCLUSIONS AND FUTURES

Based on Bayesian theory, the proposed GG-Prior is theo-

retically reasonable and straight forward. Though choosing a

large search neighborhood N and a new weighting strategy

that incorporates the connectivity affinity between pixels in

N , the proposed GG-Prior is able to provide more image

nonlocal similarity information for the original ill-posed

reconstruction.

We also introduced an algorithm, called the PSCA+GG-

Prior algorithm, that can be feasibly and effectively imple-

mented using the proposed binary optimal reconstruction

strategy. Because the proposed PSCA+GG-Prior algorithm

can be considered as a version of OSL algorithm, it is eas-

ily straightforward to implement, but nonnegative estimates

cannot be guaranteed and, like many existing algorithms,

convergence is an open issue. Although the tradeoff between

resolution and noise can be controlled by certain regulariza-

tion parameters(i.e. β and h), like many researchers, we have

not determined a way to choose the parameters so that the

data-fit and a prior information are optimally ”balanced”.

Future work includes analyzing the convergence property

of the reconstruction algorithm, exploring effective ways to

reduce the computational cost and study automatic parameter

methods.

(a) (b)

(c) (d)

Fig. 4. FBP reconstruction and Bayesian reconstructions using different
priors in the real hotlesion phantom studies. (a)is the FBP reconstruction,
(b) is Huber-Prior reconstruction, (c)is the GG-Prior reconstruction with
(φα = t2), and (d)is the GG-Prior reconstruction with (φα = |t|)
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