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Abstract— Biology, Psychology and Social Sciences are in-
trinsically connected to the very roots of the development of
algorithms and methods in Computational Intelligence, as it is
easily seen in approaches like genetic algorithms, evolutionary
programming and particle swarm optimization. In this work
we propose a new optimization method based on dialectics
using fuzzy membership functions to model the influence of
interactions between integrating poles in the status of each
pole. Poles are the basic units composing dialectical systems.
In order to validate our proposal we designed a segmentation
method based on the optimization of k-means using dialectics
for the segmentation of MR images. As a case study we used 181
MR synthetic multispectral images composed by proton density,
T1- and T2-weighted synthetic brain images. Comparing our
proposal to k-means, fuzzy c-means, and Kohonen’s self-
organized maps, concerning the quantization error, we proved
that our method can improved results obtained using k-means.

I. INTRODUCTION

The dialectical method is based on considering parts of

reality (or phenomena) as dynamical systems. These systems

are composed by several integrating poles. Each pole has a

potency (as named by Aristotle, the philosopher) or force.

These poles interact with each other, in a process called

pole struggle, where the strongest poles become the dominant

poles, while similar poles are fused, new poles are generated

from the hardest conflicts between poles, and the weakest

poles are absorbed or destroyed [1].

This paper proposes a class of algorithms based on a

specific interpretation of the dialectics, namely the Objective

Dialectical Method, to be used in optimization problems. In

order to validate our proposal we designed a segmentation

method based on the optimization of k-means using dialectics

for the segmentation of magnetic resonance (MR) images.

As a case study we used MR synthetic multispectral images

composed by proton density, T1- and T2-weighted synthetic

images of 181 slices with 1 mm, resolution of 1 mm3, for

a normal brain and a noiseless MR tomographic system

without field inhomogeneities, amounting a total of 543

images, generated by the simulator BrainWeb [2]. Our prin-

cipal target here is comparing our proposal with other non-

supervised classifiers, namely k-means, classical fuzzy c-

Wellington P. dos Santos is with Departamento de Engenharia Elétrica,
Universidade Federal de Campina Grande, 58109-970, Campina Grande,
Paraíba, Brazil, and Departamento de Sistemas e Computação, Escola
Politécnica de Pernambuco, Universidade de Pernambuco, 50.720-001,
Recife, Pernambuco, Brazil (e-mail: wps@dsc.upe.br).

Francisco M. de Assis is with Departamento de Engenharia Elétrica,
Universidade Federal de Campina Grande, 58109-970, Campina Grande,
Paraíba, Brazil (e-mail: fmarcos@dee.ufcg.edu.br).

Ricardo E. de Souza is with Departamento de Física, Universidade
Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brazil (e-mail:
res@df.ufpe.br).

means, and Kohonen’s self-organized maps, concerned with

the quantization error.

This work is organized as follows: section II presents the

proposal of the dialectical optimization method based on

dialectics; section III shows the image fidelity expressions,

the parameters of the non-supervised image classification

methods, and the synthetic brain MR images used in this

work; the quantitative and qualitative experimental results

for image quantization are presented in section IV, where

in section V some discussion on experimental results is

performed, whilst conclusions are also presented.

II. DIALECTICAL OPTIMIZATION METHOD

The fundamental idea of the dialectical optimization

method is to associate the objective function of the optimiza-

tion problem to the social force of each pole: the adjustment

of poles depends on the present hegemonic pole and the

historical hegemonic pole. The hegemonic pole is the pole

with the greatest social force among the set of the forces

of all poles in a determined historical moment. The present

hegemonic pole is the hegemonic pole of the present instant,

whilst the historical hegemonic pole is the hegemonic pole of

the historical period from the beginning of dialectical system

to the actual instant. The search for possible solutions occurs

in two intertwined phases: evolution and revolutionary crisis.

A. General Definition

To understand the dialectical optimization method it is

important to present some important definitions and assump-

tions:

• Pole: It is the fundamental integrating unit of a dialec-

tical system. Given the set of poles

Ω = {w1,w2, . . . ,wm},

the pole i, as defined in [3], is associated to the vector of

weights wi = (wi,1, wi,2, . . . , wi,n)T , where wi ∈ S,

m is the number of poles and n is the dimensionality of

the system. In our proposal, poles also have the role of

solution candidates. Objective function’s and system’s

dimensionalities are the same, where f : S → R, S ⊆
R

n and Ω ⊆ S.

• Social force: To each pole i is associated a social force

equals to the value of the objective function f in the i-
th pole, that is, the social force of the i-th pole is given

by f(wi).
• Hegemony: In the process of pole struggle, the k-th pole

has the hegemony in instant t when:

f(wk(t)) = fC(t) = max
1≤j≤m(t)

f(wj(t)), (1)
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where 1 ≤ k ≤ m(t). The vector wC(t) = wk(t)
is called the present hegemonic pole, or contemporary

hegemonic pole, where fC(t) is the present hegemonic

force, or contemporary hegemonic force. The historical

hegemonic force in instant t, fH(t), is given by:

fH(t) = max
0≤t′≤t

fC(t′), (2)

where wH(t) = wC(t′), for f(wC(t′)) = fH(t) and

0 ≤ t′ ≤ t.
• Absolute antithesis: Given x for a ≤ x ≤ b, where

a, b ∈ R, the opposite of x is given by [4]:

x̆ = b − x + a. (3)

This result has a geometrical interpretation: considering

the translation x′ = x − (a + b)/2, the translation

opposite is x̆′ = −x′ = −x + (a + b)/2; the opposite

inversion is x̆ = x̆′ + (a + b)/2 = −x + a + b =
b−x+a. Consequently, the opposite number is defined

in relation with the mean of the interval. Assuming

x = (x1, x2, . . . , xn)T and x ∈ S ⇒ ri ≤ xi ≤ si,

∀i = 1, 2, . . . , n, where ri and si are the inferior and

superior boundaries of the i-th dimension of S, the

associated opposite vector, x̆ = (x̆1, x̆2, . . . , x̆n)T has

its coordinates calculated as follows [4]:

x̆i = si − xi + ri, (4)

where i = 1, 2, . . . , n. The absolute antithesis vector

of pole w is defined by its opposite vector w̆. Rahna-

mayan et al affirm that, in evolutionary programming

and particle swarm optimization, the presence of pairs

of opposite vectors in the initial population typically

accelerates the convergence of algorithms in 10% [4].

• Contradiction: The contradiction between poles wp and

wq is given by:

δp,q = d(wp,wq), (5)

where d : S2 → R+ is a distance function, for δp,q =
δq,p, ∀p, q. A typical distance function is the Euclidean

distance function.

• Synthesis: According to the dialectical conception, the

synthesis is the resolution of the contradiction between

two poles, where one of them is thesis and the other is

antithesis [1]. The poles wu,wv ∈ S are the possible

syntheses between poles wp and wq, calculated as

follows:

wu = g1(wp,wq), (6)

wv = g2(wp,wq), (7)

where g : S2 → S. A very intuitive approach strictly

based on the dialectical conception is to consider that all

syntheses inherit characteristics of theses and antitheses

[1], as following:

wu,i =

{

wp,i, i mod 2 = 0,
wq,i, i mod 2 = 1,

, (8)

wv,i =

{

wp,i, i mod 2 = 1,
wq,i, i mod 2 = 0,

, (9)

for i = 1, 2, . . . , n. Notice that there are similarities

between this definition and models of inheritance in

genetic algorithms. It is also possible to use different

definitions of synthesis, using different inheritance cri-

teria, in case we need to generate diversity in other

manners.

B. Algorithm for Search and Optimization

First of all, it is necessary to set the initial number of poles,

m(0), integrating the dialectical system Ω(0), the number of

historical phases, nP , and the duration of each historical

phase, nH . The number of initial poles must be even, because

a half population is randomly generated, and the other half

is obtained by the generation of the respective opposite poles

inside the domain of the functions. From the point of view

of dialectics, here we have a set of initial poles composed

by thesis-antithesis pairs of poles in antagonic contradiction,

generating a more intense initial dynamics, once the pole

struggle is more intense in this case [1]. Consequently:

wi,j(0) =

{

U(rj , sj), 1 ≤ j ≤ 1
2m(0),

w̆i′,j(0), 1 + 1
2m(0) ≤ j ≤ m(0),

(10)

for i′ = i− 1
2m(0), 1 ≤ i ≤ m(0) and 1 ≤ j ≤ n, where n is

the dimensionality of the optimization problem, U(rj , sj) is a

random number uniformly distributed in the interval [rj , sj ],
and S =

⋂n

j=1[rj , sj ], since sj > rj and sj , rj ∈ R.

While the maximum number of historical phases, nP , is

not reached, and the historical hegemonic force is not bigger

than a given superior threshold of force (initial estimative of

the maximum value of the objective function), fH(t) < fsup

(criterion to estimate the maximum value of objective func-

tion is reached), the phases of evolution and revolutionary

crisis are repeated, in this order.

Evolution: While the maximum number of iterations, nH ,

is not reached, and fH(t) < fsup, poles are adjusted

according to the following expression:

wi(t + 1) = wi(t) + ∆wC,i(t) + ∆wH,i(t), (11)

for

∆wC,i(t) = η0(1 − µC,i(t))
2(wC(t) − wi(t)), (12)

∆wH,i(t) = η0(1 − µH,i(t))
2(wH(t) − wi(t)), (13)

where 0 < η0 < 1. The terms ∆wC,i(t) and ∆wH,i(t)
are used to model the influence of present and historic

hegemonies, in this order, above the i-th pole. The terms

µC,i and µC,i are the present membership and the historical

membership, respectively, defined as following, based on the

membership functions of the classical version of fuzzy c-

means non-supervised classifier [5]:

µC,i(t) =





m
∑

j=1

|f(wi(t)) − fC(t)|

|f(wj(t)) − fC(t)|





−1

, (14)

µH,i(t) =





m
∑

j=1

|f(wi(t)) − fH(t)|

|f(wj(t)) − fH(t)|





−1

, (15)
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where 1 ≤ i ≤ m(t). Therefore, when f(wi(t)) is close

to fC(t), the term µC,i(t) is close to 1, turning ∆wC,i(t)
closer to 0 and, consequently, turning the influence of the

present force correlation almost null. When f(wi(t)) is close

to fH(t), the behavior is similar.

Revolutionary Crisis: In the stage of revolutionary crisis,

the following steps are executed:

1) All contradictions δi,j are evaluated; the poles whose

contradictions are smaller than the minimum contradic-

tion δmin are fused, in a process defined as following

δi,j(t) > δmin ⇒ wi(t),wj(t) ∈ Ω(t + 1), (16)

δi,j(t) ≤ δmin ⇒ wi(t) ∈ Ω(t + 1). (17)

i 6= j, ∀i, j where 1 ≤ i, j ≤ m(t) and Ω(t + 1) is the

new set of poles.

2) From the contradictions evaluated previously, the great-

est are selected and considered the principal contra-

dictions of the dialectical system; poles involved in

principal contradictions are considered thesis-antithesis

pairs and, with their synthesis poles, they now belong

to the new set of poles, that is:

δi,j(t) = δmax ⇒ wu(t),wv(t) ∈ Ω(t + 1), (18)

where

δmax(t) = max
1≤p,q≤m(t)

{δp,q(t) : p 6= q},

wu(t) = g1(wi(t),wj(t)),

wv(t) = g2(wi(t),wj(t)),

for i 6= j, ∀i, j where 1 ≤ i, j ≤ m(t).
3) The effect of crisis is added, given the maximum crisis,

χmax, to all poles in the dialectical system Ω(t + 1),
generating the new set of poles, Ω(t + 2), for wk(t +
2) ∈ Ω(t + 2), since

wk,i(t + 2) = wk,i(t + 1) + χmaxG(0, 1), (19)

for 1 ≤ k ≤ m(t + 1) and 1 ≤ i ≤ n, where

G(0, 1) is a random number distributed according to

the distribution of Gauss, with expected value 0 and

variance 1.

4) If the stop criterion is not reached, a new set of poles

is generated, as following:

wi(t + 2) ∈ Ω(t + 2) ⇒ w̆i(t + 2) ∈ Ω(t + 2), (20)

for 1 ≤ i ≤ m(t + 2), where m(t + 2) = 2m(t + 1).
Consequently, the set of poles is enlarged by adding

poles in antagonic antithesis to the others previously

existing. Such a procedure models the dialectical prop-

erty of a system carrying opposite forces as a seed of

potential qualitative transformation in every historical

changing.

Fig. 1. R0-G1-B2 colored composition of PD-, T1-, and T2-weighted MR
images of the 97th slice

III. MATERIALS AND METHODS

A. MR Images

In this work we adopted the following case study: we

used MR synthetic multispectral images composed by proton

density, T1- and T2-weighted synthetic sagital images of

181 slices with 1 mm, resolution of 1 mm3, for a normal

brain and a noiseless MR tomographic system without field

inhomogeneities, amounting a total of 543 images, generated

by MR image simulator BrainWeb [6], [2]. All images were

composed by R0-G1-B2 colored compositions, where bands

0, 1 and 2 are PD- (proton density), T1- and T2-weighted

MR images. Figure 1 shows the image of the 97th slice.

B. Quantization Error

The quantization error is an indirect measure of the

quantization distorsion. It is used to evaluate the problem

of clustering the pixels of the image f : S → Wn, with

dimensions nH × nW and nB = n bands, in nG groups

(classes) with centroids V = {v1,v2, . . . ,vnG
}. Hence

the clustering process is reduced to minimize the following

function:

Je =

nG
∑

i=1

∑

∀f(u)∈Gi

||f(u) − vi||

nGnG,i

, (21)

where u ∈ S and ||f(u) − vi|| is the distance between the

pixel pixel f(u) of the image f : S → Wn and the centroid

of the i-th group vi, whilst nG,i is the number of elements

of f grouped in the i-th cluster and Je is the quantization

error [7], [8]. Hence the solution candidates are:

x = (vT
1 ,vT

2 , . . . ,vT
nG

)T . (22)

C. Non-Supervised Image Classification Methods

The synthetic multispectral images obtained by colored

compositions R0-G1-B2 were classified using the following

methods, also used to evaluate vector quantization perfor-

mance:

1) Kohonen self-organized map classifier (KO): 3 inputs,

13 outputs, maximum of 200 iterations, initial learning

rate η0 = 0.1, circular architecture, Gaussian function

of distance;

2) Fuzzy c-means classifier (CM): 3 inputs, 13 outputs,

maximum of 200 iterations, initial learning rate η0 =
0.1;
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Fig. 2. Classification results of the 97th slice using KO method

Fig. 3. Classification results of the 97th slice using CM method

3) K-means classifier (KM): 3 inputs, 13 outputs, maxi-

mum of 200 iterations, initial learning rate η0 = 0.1.

4) Objective dialectical method (ODM): 20 initial poles,

10 historical phases of 20 iterations each phase (stop

criteria), initial step η0 = 0.99, minimum contradiction

of 0.1, maximum contradiction of 0.9, maximum crisis

of 0.9, threshold value of 0.01. After all historical

phases, the training process was finished with only 2

poles. As can be seen, ODM is a bit more complex

than other segmentation methods.

IV. EXPERIMENTAL RESULTS

Figures 2, 3, 4 and 5 show segmentation results for the

image of the 97th slice, figure 1, using methods KO, CM,

KM and ODC, respectively, where each class is associated

to a specific random color. The optimization process was

performed according to the quantization error considering

the 97th slice, once it presents all structures of interest.

Table I shows the results of the quantization error of the

segmentation methods for the 97th slice, whilst table II shows

results (sample average and mean deviation) considering all

181 slices with 3 bands (DP, T1 and T2), for KO, CM, KM

and ODM methods.

Fig. 4. Classification results of the 97th slice using KM method

Fig. 5. Classification results of the 97th slice using ODM method

KO CM KM ODM

Je 9.02 7.89 9.37 8.65

TABLE I

MEASURES OF QUANTIZATION ERROR CONSIDERING THE 97TH SLICE

V. DISCUSSION AND CONCLUSIONS

From the analysis of table I it is clearly seen that ODM

improved the results of KM, since we got Je of 8.65 against

9.37 for the 97th slice. This result is also a bit better than

the result obtained by KO, but still worse than CM’s, with

quantization errors of 9.02 and 7.89, respectively. From table

II we can see that ODM obtained a sensible reduction of Je

compared with KM, but the general results got with KO and

CM were better. These results prove that the use of dialectical

optimization can improve the performance of classical k-

means according to a given cluster validity index.
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