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Abstract— Electron microscope tomography [1] has been
proven as an essential technique for imaging the structure of
cells beyond the range of the light microscope down to the
molecular level. However, because of the extreme difference
in spatial scales, there is a large gap to be bridged between
light and electron microscopy. Various techniques have been
developed, including increasing size of the sensor arrays,
serial sectioning and montaging. Data sets and reconstruc-
tions obtained by the latter techniques generate many 3D
reconstructions that need to be glued together to provide
information at a larger spatial scale. However, during the
course of data acquisition, thin slices may become warped in
optical and electron microscope preparations. We review some
procedures for de-warping sections and reassembling them into
larger reconstructions, and present some data from electron
microscopy.

I. BACKGROUND

During the past two decades, major effort in the biological
sciences has been devoted to understanding the structure and
function of proteins and other molecules in living systems.
It is now recognized that this is insufficient for the complete
understanding of what is happening in living cells. The
electron microscope allows us to image cells at the next level
of organization. High resolution EM images reveal a complex
ultrastructure inside the cells of living organisms. Combined
with tomographic techniques [1], electron microscopy, has
been an indispensable tool for probing the three-dimensional
structure of cells and sub-cellular organelles. Because of
these findings, there is a second gap to be bridged, the
gap between conventional light microscopes and electron
microscopes. For example, the difference in spatial scales
under investigation between an electron microscope and a
light microscope can be as much as 105. In terms of volume
covered this is a factor of 1015. Thus, an atlas of 3D EM
tomographic reconstruction covering the same area as a
single reconstruction from a light microscope may require
as many as 1015 entries. Immense volumes of data must be
collected to build a picture coherent with light microscope
data. Such a task could be termed “biology at the petascale”.
The process of data collection has been somewhat simplified
by moving to larger image detectors – up to 8K × 8K
pixels or larger. However, to develop even partial coverage
of volumes corresponding to light microscope images, many
tomographic reconstructions – serial sections or montages –
are required. Serial sections, as the name implies, are gener-
ally employed to reconstruct thicker sections; for example,
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a light microscope section may be sliced into many thinner
sections for EM study. Montaging techniques are employed
to extend in the other directions [2]; two overlapping regions
of a section are imaged and reconstructed separately and then
glued together after the reconstruction.

Fig. 1. Serial stacking of warped volumes includes two steps. The tomo-
graphic reconstructions are first flattened in step (a). Straightened volumes
are then stacked and rearranged using a contour-based correspondences 2D
remapping in step (b).

II. PROBLEMS WITH SERIAL TOMOGRAPHY
Because of the curvilinearity of electron trajectories [4],

larger detector arrays produce additional problems. This
is because electrons travel in helicoidal paths under the
influence of magnetic fields in the optical components of
the EM [3]. The combination of geometric and optical aber-
rations at higher sample rotations may produce significant
deviations from the straight trajectories. Deviations from the
linear projection model are not the only effects which may
degrade reconstruction quality. Sample warping [1] and other
complex optical aberrations [3] may confound the simple
helicoidal effects and produce irregular and unpredictable
distortion. Digital reassembling is complicated by sample
warping for both serial sections and montaging. We describe
some of the problems associated with warping in the next
section.

The problems associated with curvilinear trajectories are
quite subtle both for montaging and with serial sections.
Because alignment markers are generally placed on the sur-
faces of the sample, the electron trajectories are given by the
position of the markers on the surface [5]. In the case of mon-
taging, this means that correspondences between trajectories
from one tilt series to another, taken at an adjacent region,
can be defined on the surfaces of the overlaps. However, the
correspondence is unspecified in the interiors of the overlap
regions. This is true even if the beam does not change during
acquisition of the tilt series, because sample mass loss will
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cause apparent displacement of features in the interior of
the sample. Often, because of random placement of markers
on the surfaces, there may be no markers in regions of
overlap, so determining a precise correspondence of electron
trajectories in overlap regions may not even be possible
near the surfaces of the sample. The situation is slightly
different with serial sections because there is no common
marker nor overlapping areas. We discuss the problems with
serial sections in the present paper, but problems with precise
alignment of montagined reconstructions are are still open at
present.

A further complication, from an engineering perspective
is the need to automate the process. With the advent of large
field capabilites, increases in sheer numbers of tomograms,
and increasing research efforts in bridging the gap between
light and electron microscopy, huge volumes of data must
pass through computational facilities devoted to tomography.
Manual intervention in the reconstruction process at any
stage slows down the purely mechanical steps associated
with tomography, and puts unnecessary burdens on hu-
man resources. With recent reports of automated tracking
and alignment [6], automated processing from raw data to
finished tomograms appears possible. At present montag-
ing requires detection and alignment of structures within
overlapping regions. Doing this automatically is a difficult
AI problem [2], and still a largely open field in electron
microscope microscopy. An alternative solution, would be to
“straighten” trajectories in the overlaps, so that the alignment
is reduced to a 2D problem, which is solvable by current
techniques. We will discuss this in later sections.

Fig. 2. During the flattening procedure, each z-section of the specimen is
de-warped. The involved transformation can be fully 3D with an approach
based on electrostatic analogy (left) or purely 1D with a shear-type approach
(right).

III. HEURISTIC METHODS FOR DE-WARPING
SAMPLES

A. Introduction.

In practice, two types of sample deformation are appar-
ent in electron tomography. On one hand, volume bend-
ing/twisting are out-of-plane deformations that do not pre-
serve specimen boundaries. On the other hand, in-plane
(or internal) displacements within the reconstructed volumes
prevent a seamless serial stacking, creating discontinuous
interfaces. Even though these two processes are without any
doubt coupled, one can adopt an heuristic approach that
consists in correcting for those deformations one after the
other, by first flattening volumes and then rearranging their
internal components for a better stacking.

Physical mechanisms leading to the sample deformation
are unclear and result probably from a combination of many
effects, such as the mechanical stress that occurs during the
microtome step or the electron-beam-induced stress during
data acquisition. Apparent deformations may also not be real,
being artifacts in the reconstructions related, for instance,
to the curvilinear nature of the electron trajectories. The
complexity of the problem is such that the approach we
adopt in the following is mostly motivated by practical
considerations.

Fig. 3. Example of a warped reconstruction for a dendrite specimen from a
mouse hippocampus. The z-section is taken so that part of the reconstruction
is warped out of plane.

Fig. 4. Flattened reconstruction. This shows a z-section which is the same
a in figure 3. The reconstruction surface is no longer warped out of plane.
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B. Flattening.

In this section, we suppose that the z-axis is roughly
perpendicular to the thin slab-like biological sample, and
that the external specimen boundaries are described with
two algebraic surfaces z = f1(x, y) and z = f2(x, y);
volume density is denoted u(x, y, z). Note that outside of
the reconstruction for z < f1(x, y) and z > f2(x, y),
u(x, y, z) ' 0.

Flattening the volume reduces to the problem of finding
the appropriate transformation that associates u to another
volume density ū delimited by two plane boundaries z = z1

and z = z2.
One can choose to transform the volume so every one

of its internal slices remains orthogonal to its displacement
during the transformation (see left schematic in figure 2).
The corresponding transformation can be evaluated by use of
an electrostatic analogy. Consider the capacitor whose plates
match the initial and final position of an internal membrane
to the volume; displacement of the membrane should occur
along the electric field lines. The general solution of this
problem involves solving a set of Laplace’s equations in a ge-
ometry specified by the initial (warped) and final (flattened)
states of the volume. Even though this solution appeals to
one’s common sense, there is absolutely no guarantee that
the sample underwent such a transformation – or inverse
transformation to be more specific.

A simpler solution is to adopt a shear type de-warping
procedure (see right schematic in figure 2). This consists in
readjusting the volume density along the z direction to be
delimited by [z1, z2]. The flattened density ū is then:

ū(x, y, z) = u(x, y, z̃), (1)

where z̃ is given by

z̃ =
z − z1

z2 − z1
[f2(x, y)− f1(x, y)] + f1(x, y) (2)

Finally, an additional constraint between z1 and z2 needs
to be assumed to close this problem. The transformation can
be isovolumic, with the same overall volume for the warped
and de-warped case. Other possibilities consist in setting the
difference z2 − z1 to match either the minimal, average or
maximal width of the original warped volume.

As opposed to the previous 3D approach, this solution is
a strictly 1D problem, and thus easy to implement.

C. Two-dimensional Remapping.

During the stacking procedure, all the flattened volumes
are first assembled along the z-direction; this preliminary
step is carried out with translations and rotations. Next, an
in-plane structure rearrangement is accomplished by consid-
ering corresponding contours between adjacent volumes.

Those contours are provided on both sides of an interface,
and their differences generate a set of constraints that will
support the in-plane rearrangement. The latter consists in
providing, at each z-section of the stack, a deviation map:

Fig. 5. Segmentation of the specimen boundary planes. The colored sets
correspond to the two surfaces of the warped sample.

(i, j)→ δi,j, (3)

which associates for every pixel (i, j) a two-dimensional
vector δi,j representing the displacement to apply for a
refined stacking.

The problem now reduces to generating the deviation map
for the entire stack from a sparse input, the set of “random”
1D constraints defined within a few 2D images.

Let us first consider the case of a simple interfacial
z-section. We denote C the set of pixels for which the
displacement field is known. For simplicity, we also ensure
that C contains the points belonging to the external edges
of the image – for which i = 0, j = 0, i = Nx + 1 and
j = Ny + 1 by extrapolation. Nx and Ny are the number of
image pixels in the x and y direction.

How then do we fill up the deviation map within the
entire section? The simplest scheme is an interpolation-type
procedure where the displacement field at each pixel of
the image results from averaging the ones of its four next-
neighbors:

δi,j =
δi−1,j−1

4
+
δi−1,j+1

4
+
δi+1,j−1

4
+
δi+1,j+1

4
. (4)

This should be carried out for any pixel (i, j) that does not
belong to C. Note also, that the displacement field is only
relative to the two volumes on both sides of the interface.

The field δi,j can then be obtained by solving a simple
linear problem; the only issue here is that the number of
variables can be huge, on the order of NxNy where Nx

and Ny can be as big as 8 × 103. A possible approach is
to evaluate δi,j with a recursive scheme, using the constraint
map as the initial values. However, we find it computationally
more efficient to solve the problem by minimizing the
following quantity:
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F =
∑
i,j

δ2i,j
2
−

∑
i,j;i 6=Nx

δi,j · δi+1,j

4

−
∑

i,j;j 6=Ny

δi,j · δi,j+1

4
,

(5)

with respect to every pixel value of the displacement field
that does not belong to C.

Stacking constraints impose a 2D displacement field for
both outer z-sections of any specimen slice. The final devia-
tion map is then evaluated at every z-section of the volume
by interpolating the outer displacement field along the z-
direction.

This interpolation-like routine relies on an appropriate set
of initial deviation constraints. It can be very effective even
when drastic variations of the in-plane deviations are present
on a wide range of length scales. This kind of situation seems
to be common in practice.

Fig. 6. Typical contours segmentation used for an in-plane remapping.
These contours follow the intersection of cut membranes with the opposing
surfaces of the sections.

D. Segmentation.

Structure segmentation is required as input to both the
flattening and the in-plane remapping routines. At present,
these segmentation steps are still manual.

For flattening the biological specimen, two sets of points
need to be provided, one set for each boundary. The two
functions f1 and f2 introduced in section III-B are then
approximated with polynomials of x and y, and their co-
efficients are calculated using a least-squares method.

In the case of the two-dimensional remapping, multiple
pair of matching contours must be provided for each in-
terfacial zone. Coordinates of points that belong to corre-
sponding contours are parametrized with an identical natural
parameter t (with 0 ≤ t ≤ 1), and described with polyno-
mial functions. The polynomial coefficients are calculated

by regression on the segmented points. The initial relative
displacement map is then evaluated by comparing the corre-
sponding contours for the same parameter values t.

During the in-plane rearrangement, one of the z-section
contiguous to an interface is kept fixed, while the other is
fully distorted according to the calculated relative deviation
map.

In another version of this 2D re-warping scheme, sets of
four (or more) consecutive matching contours are considered
in the interfacial zones to evaluate the relative displacement
field. This allows for a better account of structural changes
along the z direction,

Fig. 7. Relative displacement field to correct at an interface. This field was
reconstructed from sampling the relative displacements between contours in
opposing surfaces.

IV. RESULTS AND DISCUSSION

In this work, we considered a series of warped tomo-
graphic reconstructions obtained for a study of dendrites.
Slices containing these dendrites were taken from the hip-
pocampus area of a mouse brain. At sample preparation,
the specimen was sliced into several serial components, and
electron tomography techniques were applied to build a 3D
view of these thin slab-like components.

An example of one of the warped reconstructions is shown
in figure 3. In this case, the apparent bending angle of the
specimen is nearly 10◦. We applied the shear-type flattening
scheme described in section III-B; the result is shown on
figure 4. Surface boundaries were described with polynomial
functions of order 10 and the difference z2− z1 was chosen
to match the minimal width in the initial reconstruction. As
is made clear by a comparison figures 3 and 4, the flattening
step is very efficient and a good preamble to the in-plane
remapping.

To illustrate the 2D remapping procedure, we consider the
case of an interface separating two distinct reconstructions.
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Figure 6 displays the set of contour pairs that were manually
tracked and should be used as constraints for the displace-
ment field. Figure 7 displays the whole relative deviation map
that needs to be corrected for. Notice the smooth distribution
of δi,j . For implementing the 2D remapping, we make use
of the cvRemap function in the openCV software package.

V. FUTURE WORK

The final problem we will discuss is the problem of stitch-
ing reconstructions from large field EM images. Although it
is possible to stitch together the reconstructions by matching
structures in the object, it is also desirable to “straighten” the
trajectories so that they agree on overlap regions. We have
given the rationale for this in section II.

We are investigating application of a method developed
by S. Patch [7], [8] for the purpose of rebinning the X-
ray transform. Because the ray transform is defined in
terms of four parameters on a three dimensional space,
it is overdetermined. Thus the X-ray transform satisfies a
set of ultrahyperbolic equations known as the Fritz John
equations. Patch reports rebinning methods based on this
method. In essence she was able to obtain synthetic images
corresponding to other families of trajectories by treating
the consistency conditions as a boundary value problem, and
solving this problem via numerical methods.

Similar consistency conditions can be obtained if we cut
up the object by a set of parallel planes and integrate along
broken paths which connect a point in one plane to a point
in the next plane via a straight line path. Any trajectory can
be approximated by a series of broken line segments, and
the method developed by Patch can be applied to individual
segments. By iterating over the set of segments, a broken
trajectory can be straightened to a straight-line trajectory.
Thus the method developed by Patch can be extended to an
iterative code for creating a synthetic X-ray transform. We
plan to implement these methods in a computer code.
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