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Abstract— In a double blind evaluation of 60 digital der-
matoscopic images by 4 “junior”, 4 “senior” and 4 “expert”
dermatologists (dermatoscopy training respectively less than 1

year, between 1 and 5 years, and more than 5 years), a sig-
nificant inter-operator variability was observed in melanocytic
lesion border identification (with a disagreement of the order
of 10 − 20% of the area of the lesions). Expert dermatologists
showed greater agreement among themselves than with senior
and junior dermatologists, and a slight tendency towards
“tighter” segmentations.

The human inter-operator variability was then used to eval-
uate the segmentation accuracy of 4 algorithms, representative
of the 3 fundamental state-of-the-art automated segmentation
techniques and of a fourth, novel, technique. Our evaluation
methodology addresses a number of crucial difficulties encoun-
tered in previous studies and may be of independent interest. 3

of the 4 algorithms showed considerably less agreement with ex-
pert dermatologists than even senior and junior dermatologists
did (with a disagreement of the order of 30% of the area of the
lesions); the remaining algorithm, however, showed agreement
with expert dermatologists comparable to that of other expert
dermatologists.

I. INTRODUCTION

The first step in the analysis of any dermatoscopic image

of a melanocytic lesion is segmentation, i.e. classification of

all points in the image as part of the lesion or simply part

of the surrounding, healthy skin. While segmentation is typi-

cally studied in the context of automated analysis of images,

it is important to observe that it is a first, necessary step

even for human operators who plan to evaluate quantitative

features of a lesion such as diameter or asymmetry - e.g.

in the context of epidemiological studies correlating those

features to lesion benignity [12].

Unfortunately, segmentation of melanocytic lesions is a

surprisingly difficult task, for human operators and auto-

mated systems alike. The fundamental reason lies in the

fact that lesion borders are often fuzzy and there exists no

standard operative definition of whether a portion of skin

belongs to a lesion or not. Dermatologists rely on subjective

judgement developed over years of dermatoscopic training.

Automated systems attempt to replicate the assessment of

human dermatologists through a number of heuristics. Not

surprisingly, this leads to appreciable variability in the lo-

calization of the precise border of lesions, not only between

automated systems and human dermatologists, but also be-

tween different human dermatologists [9].

Quantifying this variability is crucial for at least two

reasons. First, it allows one to estimate the level of noise
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affecting large, multi-operator epidemiological studies e.g.

correlating lesion size to benignity. Second, human inter-

operator variability effectively provides an upper bound to

the segmentation accuracy achievable by any automated sys-

tem, as long as “ground truth” is provided by the subjective

evaluation of human dermatologists rather than by a stan-

dard operative definition. For example, if even experienced

dermatologists disagree on how to classify 5% of the area of

an image, no automated system can be expected to classify

“correctly” more than 95% of the area of that image.

This paper evaluates the variability in lesion border iden-

tification by a group of 12 dermatologists. This is the largest

such study so far, and the only one that differentiates der-

matologists based on dermatoscopy training experience; our

evaluation methodology also addresses some crucial difficul-

ties inherent to previous studies. The human inter-operator

variability is then compared to the segmentation accuracy

of four algorithms, representative of the three fundamental

state-of-the-art automated segmentation techniques and of a

fourth, novel, technique.

The rest of the paper is organized as follows. Section II

reviews the current metrics used to evaluate inter-operator

variability and automated segmentation accuracy, discussing

some difficulties inherent the most sophisticated approaches

– and how to address them. Section III describes the details

of the segmentation experiment involving 60 dermatoscopic

images, and the results in terms of (human) inter-operator

variability; it also reviews the fundamental techniques for

melanocytic lesion segmentation and evaluates an algorithm

representative of each within the framework introduced in

Section II. Section IV summarizes our results and discusses

their significance before concluding with the bibliography.

II. MEASURING VARIABILITY AND ACCURACY

We shall see that the two issues of measuring inter-

operator variability in segmentation of melanocytic lesions

and of measuring accuracy of automated segmentation meth-

ods are closely related. The scant body of work on the former

(essentially amounting to [9]) seems then surprising given the

vast literature dealing with the latter (e.g. [1], [11], [16], [7],

[4], [6]) that we briefly review below.

While some studies (e.g. [16], [6]) have one or more

dermatologists subjectively assess the quality of the proposed

automated systems, the general consensus is that evaluation

methods striving for a greater degree of objectivity are

preferable [4]. Most of these methods rely on a ground

truth segmentation against which the proposed segmentation

is assessed, labeling its pixels as True Positive (TP), False

Positive (FP), False Negative (FN) or True Negative (TN),
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TABLE I

SOME COMMON METRICS TO EVALUATE SEGMENTATION

XOR Error [2] (FP+FN

TP+FN
) × 100%

Specificity (1 −
FP

FP+TN
) × 100%

Sensitivity or Recall (1 −
FN

TP+FN
) × 100%

Precision (1 −
FP

FP+TP
) × 100%

depending on whether they are classified as part of the lesion,

respectively, in both segmentations, only in the proposed

segmentation, only in the ground truth segmentation, or in

neither of the two. The number of pixels in the FP and

FN categories, usually normalized dividing them either by

the size of the proposed lesion (TP+FP), by the size of the

ground truth lesion (TP+FN) or by the size of its complement

(FP+TN), provide a measure of the divergence between the

proposed segmentation and the ground truth.

The fundamental problem with these approaches is that

any definition of “ground truth” based on the segmentation

of a single dermatologist is inherently highly subjective.

Thus, several recent approaches combine the evaluation of

multiple dermatologists to obtain a more objective ground

truth segmentation. However, these approaches are more

complex, and all exhibit some shortcomings.

[1] compares the proposed segmentation with the seg-

mentation of each “ground truth” dermatologist separately

without attempting a summary – this makes it hard to

compare two different proposed segmentations. [10] obtains

a single ground truth segmentation from those of multiple

dermatologists through simple majority voting – as observed

in [4] this does not discriminate between a situation with high

consensus and one with high divergence between different

ground truths, whereas the former should intuitively penalize

a divergence of the proposed segmentation more heavily than

the latter. [4] proposes the use of the NPRI metric, first intro-

duced in [19] to assess the quality of generic segmentation

algorithms. Unfortunately, NPRI is very complex, lacking the

immediacy of True/False Positive/Negative approaches, and

exhibits some highly counterintuitive behaviors [14]: e.g. a

segmentation that is “tighter” than ground truth may receive

a worse score than a segmentation that is even “tighter” (see

Figure 1). [9] computes, for each proposed segmentation,

a Misclassification probability that is essentially the average

(over all ground truths) of FP
FP+TP

– i.e. the average fraction

of the segmented lesion misclassified as lesion. Unfortu-

nately, this does not penalize false negatives at all, and all

segmentations “tighter” than ground truth receive the same

score as ground truth itself.

In addition to their individual shortcomings, all these

metrics share a subtler, but perhaps more serious problem:

they do not provide an idea of how well one can expect

a proposed segmentation to perform. While some of them

(e.g. [10], [4]) are normalized in such a way that, for every

(set of) ground truth(s), the best score a segmentation can

achieve is exactly 1, it is generally unrealistic for any human

Fig. 1. Counterintuitive behavior of NPRI and Misclassification Probability.
The latter assigns the same score to the the ground truth segmentation (A)
and to the two “tighter” segmentations (B and C). NPRI assigns to B a
score worse than C, despite the fact that B is closer to the ground truth.

dermatologist – and thus for any automated segmentation

system – to achieve such a score.

The solution we propose is simple, and in the spirit of

the classic Turing test [17]: when evaluating an automated

segmentation system, in addition to the ground truth segmen-

tation(s), one should always employ one more “calibration”

segmentation provided by an experienced dermatologist. The

divergence of the calibration segmentation from the ground

truth (by whatever metric one may choose) provides a clear,

intuitive indication of the best divergence one can hope

for when evaluating by that same metric an automated

segmentation system (or even, in fact, a less experienced

dermatologist!). In a nutshell, we propose the variability be-

tween experienced human dermatologists in the localization

of melanocytic lesion border to be used as a gold standard

to assess the quality of any automated segmentation system.

While the choice of the basic divergence metric is rel-

atively unimportant, our choice would fall on the average

of FP
FP+TP

over all ground truths (i.e. the Misclassification

probability of [9]) paired with the complementary average

of FN
FP+TP

to account for false negatives. The latter metric

is similar to Precision and Recall, but the normalization

takes place over the size of the lesion according to the

segmentation under test (as in [9]) rather than according to

ground truth – allowing divergence from each ground truth to

have the same weight. This pair of metrics makes extremely

clear the source of a segmentation’s divergence from ground

truth - identifying whether the cause lies in many ground

truth lesion pixels classified as healthy skin (leading to high

FN) or many ground truth healthy skin pixels classified as

lesion (leading to high FP).

III. COMPARING DERMATOLOGISTS AND ALGORITHMS

The (768 by 576 pixel) images of 60 melanocytic lesions

were acquired using a Fotofinder digital dermatoscope. 12
copies of each image where then printed on 13 cm by 18 cm

photographic paper. A copy of each image together with

a marker was given to each of 4 “junior”, 4 “senior” and
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4 “expert” dermatologists (respectively less that 1 year of

dermoscopy training, between 1 and 5 years, and more than

5 years). Each dermatologist was then asked to independently

draw the border of each lesion with the marker. The images

(and borders) were scanned and realigned to the same frame

of reference. Finally, the contours provided by the markers

were extracted and compared. This allowed the identifica-

tion, for each pixel of each original image, of the set of

dermatologists classifying it as part of the lesion proper or

of the surrounding, healthy skin.

This approach required a considerable amount of engineer-

ing effort compared to that of similar studies in the literature.

[9] had dermatologists use Adobe PhotoShop’s “pencil” tool

to draw a polygonal approximation of the contour. [4] and

[2] had dermatologists indentify a sparse set of points in the

contour and then fit the points to a second-order B-spline.

[10] had dermatologists draw the border on a tablet computer.

Our goal was to maximize the comfort of dermatologists,

thus minimizing the noise in border localization caused by

the use of unfamiliar drawing tools.

Fig. 2. Hand traced borders and two borders obtained with modified c-
Fuzzy and SIDE

Each of the 4 possible sets of 3 expert dermatologists was

used to provide a “ground truth” from which the divergence

of the remaining expert dermatologist, of the 4 senior and

the 4 junior dermatologists, as well as of 4 segmentation

algorithms was assessed. Figure 3 shows the average value

(over the 60 images and the 3 ground truth segmentations)

of the values of FP
TP+FP

and of FN
TP+FP

(see Section II).

The 4 algorithms are representative of the 3 main classes

of automated lesion segmentation techniques in the literature,

as well as of a fourth, novel technique.

The first class uses edges and smoothness constraints to

identify the lesion. We implemented GVF Snakes [7]: a

promising approach, though with a number of serious short-

comings. The algorithm requires a good initial segmentation

to converge, a preprocessing such as black frame removal or

hair removal [3], [20], and a morphological postprocessing

to refine the results.

The second class performs color clustering directly on the

image: this includes Modified JSEG [2] and SIDE [8]. We

implemented the latter.

The third class performs clustering on the color his-

togram and then maps back to the original image. Mean-

Fig. 3. Average divergence of each expert dermatologist from the ground
truth provided by the other three; and average divergence of senior and
junior dermatologists and of 4 segmentation algorithms from the same
ground truth. Divergence is measured as false negative area (FN: lesion
pixels misclassified as healthy skin) and false positive area (FP: healthy skin
pixels misclassified as lesion) as a percentage of the proposed segmentation
area (TP+FP: pixels corretly or incorrectly classified as lesion).

Shift [11] and Fuzzy c-means [16] are representative of

this class. These clustering algorithms work either using

the RGB space [1], the B component [10], the Lab space

[21], or the Pricipal Component decomposition [16]. We

implemented an algorithm close in spirit to Fuzzy c-means –

and that overcomes the initialization problem. The algorithm

computes the Principal Components of the image, using

the Karhunen-Love transform, and then the 2-dimensional

histogram h associated with the two components of largest

variance. Given the number of clusters, the two following

two (recursive) equations optimally cluster the color space:

Uk,x =
1

d(x, ck)α

∀k : arg min
ck

Ik =

∫
A

(Uk,x)β |x, ck|
γh(x)λdx

where x is a point in the 2d color space, ck is the center

of cluster k in the color space, Uk,x refers to the fuzzy

membership of x to cluster k, | · | is the Euclidean distance,

α,β,γ and λ are scalar values and A is the image. A steepest

descent algorithm performs the minimization until a steady

state is reached. The histogram clustering is then mapped

back to the original image and a morphological postprocess

removes the smallest areas.

A technique that does not fit into any of the three classes

above could be based on Statistical Thresholding - in a

nutshell, classifying as lesion those portions of skin that

statistically differ in color from healthy skin. Given the

average RGB color µ and matrix variance Σ of an healthy

patch of skin (e.g. taken from the boundaries of the image)

each pixel is classifies as lesion according to

d(c, µ) ≥ k · |Σ|

where d is the Euclidean distance in the color space and

k is a scalar controlling the sensitivity of the algorithm.

Obviously, the algorithm does not perform well on lesions

covering only a small region of the image: this is a problem
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common to many algorithms that can be easily fixed with a

crop of the image frame. The advantages of this approach

are that it is simple to implement, and that it corresponds to

a very “natural” definition of lesion (as the portion of skin

exhibiting sufficient color variance from healthy skin).

IV. DISCUSSION AND CONCLUSIONS

The results of Figure 3 show appreciable variability in the

localization of the border of melanocytic lesions between

human dermatologists. Even an expert dermatologist “mis-

classifies” (compared to a ground truth provided by other

expert dermatologists) a portion of the image with an area

between 2.2% and 39.1% of the area of the lesion itself. Less

experienced dermatologists have an even lower agreement

with their expert colleagues: the misclassified portion of the

image has an area between 7.4% and 62.5% of the area of

the lesion itself for “senior” and between 5.9% and 152.4%

for “junior” dermatologists.

Although not entirely apparent from Figure 3, this diver-

gence is not due to a systematic bias of individual dermatol-

ogists towards “tighter” or “looser” borders: we ranked all

dermatologists for each lesion in order of increasing surface

classified as lesion, and each dermatologist ranked first on at

least one lesion, and at eighth or “larger” on at least another.

On the other hand, expert dermatologists do show a very

slight bias towards “tighter” borders (perhaps a symptom

of greater confidence), and also, as should be expected, a

somewhat greater agreement with other expert dermatologists

than with less experienced ones.

It would certainly be interesting to study the impact

of such variability on large, multi-operator epidemiological

studies. These results seem to roughly confirm those of [9],

though they are not directly comparable due to the different

methodology ([9] evaluates the segmentation divergence of

human dermatologists from a mix of human and algorithmic

segmentations, rather than only from human segmentations).

They also suggest that dermatoscopy skills require at least

several years of training to mature.

In terms of algorithms, SIDE, Snakes and Statistical

Thresholding did not perform very well, misclassifying a

portion of the image with an area respectively between 8.4%

and 92.6%, between 12.1% and 245.5%, and between 13.8%

and 151.9% of the area of the lesion itself. These 3 algo-

rithms were outperformed on average by every dermatologist,

including ones belonging to the least experienced, “junior”

cohort. As for Snakes, this might have been expected, in

the light of the recent results of [5]. As for Statistical

Thresholding, this shows that unfortunately the most nat-

ural, axiomatic definition of lesion (as the portion of skin

exhibiting sufficient color variance from healthy skin) fails

to provide results that, in practice, match the actual intuition

of the human eye. As for SIDE, its poor performance is

somewhat unexpected, given the results of [8]. This may

be due, in part, to the fact that SIDE is a particularly

difficult algorithm to calibrate correctly - its performance

could perhaps be improved with better fine-tuning than what

we managed to achieve.

On the other hand, our variant of Fuzzy c-means per-

formed extremely well. On average, it misclassified a portion

of the image with an area between 3.7% and 50.2% of the

area of the lesion itself (again, using as ground truths the

segmentations provided by teams of three expert dermatolo-

gists). This is barely worse, and in 1 case out of 4 better, than

the performance of the fourth, expert dermatologist used as

“control” in each case. It is also significantly better than the

performance of all remaining senior and junior dermatolo-

gists. Figure 2 provides a visual intuition of the quality of

the results of this algorithm. Fuzzy c-means thus appears

an excellent candidate to provide standardized, objective

and highly reproducible segmentation of melanocytic lesions

and assessment of corresponding features that closely match

those of the most experienced dermatologists.
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