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Abstract— We present here a novel method for whole brain
magnetic resonance (MR) image registration that explicitly
penalizes the mismatch of cortical and subcortical regions
by simultaneously utilizing anatomic segmentation information
from multiple cortical and subcortical structures, represented
as volumetric images, with given T1-weighted MR image
for registration. The registration is computed via variational
optimization in the space of smooth velocity fields in the
large deformation diffeomorphic metric matching (LDDMM)
framework. We tested our method using a set of 10 manually
labeled brains, and found quantitatively that subcortical and
cortical alignment is improved over traditional single-channel
MRI registration. We use this new method to generate a
volumetric and cortical surface-based population average. The
average grayscale image is found to be crisp, and allows the
reconstruction and labeling of the cortical surface.

I. INTRODUCTION

Whole brain image registration is a useful tool for studying

anatomical variability and pooling information into a tem-

plate space. Inter-subject whole brain magnetic resonance

(MR) image registration is a challenging problem because

of the high degree of anatomical variability, especially in the

highly convoluted folding of the cortical regions, and the size

and shape of subcortical structures and ventricles. Previous

approaches can be categorized into those that drive the

registration using image intensity information, such as [1],

[2], [3], [4], [5], [6], [7], and those that use features derived

from the images, such as [8], [9]. Feature-based methods

have the advantage of working with a lower dimensionality

representation of the anatomy, but possibly lack information

present in the original images that was not detected as

features, weak edges for example.

Recent approaches have used a combination of intensity-

and feature-based methods, such as [10], which computed a

cortical surface registration using sulcal landmarks, extended

the registration to the entire volume, followed by intensity-

based refinement. Our previous work [11] used Freesurfer

[12], [13] segmentations of the region of interest to pro-

vide an initial mapping for the subsequent matching using

grayscale image intensities for computing a refined segmen-

tation. A recent paper [14] compared a few approaches for

registration, and showed that initialization of registration

of grayscale MR images with anatomical segmentations of

regions of interest outperforms the direct grayscale MR

image based registration alone because of the benefit of a-

priori information available on the anatomical region to be

aligned. In the small deformation setting, manually identified
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landmarks were used to initialize registration [9] followed by

multi-channel segmentation using a few semi-automatically

defined subcortical structures such as caudate, putamen,

thalamus and cerebellar lobes.

Existing approaches reviewed above are specialized to

registering certain areas of the brain, such as subcortical or

cerebellar regions [9], [10], or may employ semi-automated

steps [9]. Additionally, the standard registration cost based on

grayscale image overlap does not model the cost of mismatch

of small and thin cortical regions, or smaller subcortical

structures and can thereby be prone to local minima [14].

We propose here a novel algorithm that is completely auto-

mated, can accomodate large deformations, and by explicitly

incorporating a cost term that penalizes mismatch of cortical

and subcortical ROIs, designed to peform good registration at

both the cortical and the subcortical ROI level, in general the

whole brain level. To achieve this, we extend our LDDMM

setting, shown to accomodate large variability [3], to use

the automatically obtained segmentations of subcortical and

cortical segmentations as “feature channels” simultaneously

with the grayscale MR image to ensure robustness to match-

ing structures over the whole brain.

In this paper we will describe our novel multi-structure

LDDMM brain registration framework. We will compare

the performance of using multi-structure cortical+subcortical

constraints with the standard grayscale MR image regis-

tration alone using our own single channel LDDMM, and

another strong frequently-used registration method. To high-

light the advantage of using our multi-structure framework

for whole brain registration, we show a novel application for

creating a whole brain population average that is found to

be sharp, and can be processed with tools such as Freesurfer

for cortical parcellation.

II. METHODS

A. INITIAL BRAIN SEGMENTATION

To perform an initial automated segmentation of the whole

brain, we use the Freesurfer image analysis suite, which

consists of sub-cortical [15] and cortical surface [12], [13]

processing streams; the former labels 37 volumetric struc-

tures, and the latter labels 68 regions of the cortical surface

(including left and right distinctions).

Each brain MR image AMR is represented as a function

A : Ω → R, where Ω ⊆ R
3 is the domain of the 3D MR

image. Each brain was segmented into N labels, represented

similarly as label images ASeg,i, i ∈ [1, . . . , N ]. Note that

the cortical surface parcellations were voxelized to produce

volumetric cortical segmentations.
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B. MULTI-STRUCTURE REGISTRATION

Diffeomorphic registration, that is, algorithms which en-

sure the resulting transformations are one to one, invertible

and smooth, are desired in many medical registration applica-

tions because they preserve the topological properties of the

underlying anatomy [3]. To explicitly incorporate a penalty

for mismatch of labeled ROIs, we extended the existing

single channel LDDMM [5] cost toward a multi-structure

cost.

Let the pair AMR and BMR of whole brain MR images be

given, and let their N segmentations, ASeg,i, i ∈ [1, . . . , N ]
and BSeg,i, i ∈ [1, . . . , N ] be available. The diffeomorphic

transformation matching A and B is given by ϕ : Ω → Ω
such that A ◦ ϕ−1 ≈ B. This transformation ϕ is built

from the flow of smooth time-dependent velocity vector field,

vt ∈ V, t ∈ [0, 1] where V is a Hilbert space of smooth,

compactly supported vector fields on Ω. Such a velocity

vector field defines the evolution of a curve φ0,t, t ∈ [0, 1]
via the evolution equation φ̇0,t = vt(φ0,t) such that the end

point φ0,1 of the curve φ at time t = 1 is the particular

transformation ϕ = φ0,1 that is sought for registration. Let

the notation φs,t : Ω → Ω denote the composition φs,t =
φt◦(φs)

−1 with the interpretation that φs,t(y) is the position

at time t of a particle that is at position y at time s. Hence, the

transformed image A is given by A ◦ ϕ−1 = A ◦ φ1,0 ≈ B
and the transformed target image is B ◦ φ0,1. The energy

functional for our multi-channel registration is:

E(v) =

∫ 1

0

‖vt‖
2
V dt + λMR‖AMR ◦ φ1,0 − BMR‖2

L2

+

N
∑

i=1

λSeg,i‖ASeg,i ◦ φ1,0 − BSeg,i‖2
L2 ,

(1)

We discretized the derived gradient and used a simple

update scheme, vr+1
t = vr

t − ǫ∇vEt, to get the updated

velocity field at iteration r given the previous iteration.

Details of the numerical implementation and algorithm can

be seen in [5]. The software implementation is in C++ and

uses the Message Passing Interface (MPI) for parallelization.

C. POPULATION AVERAGE CONSTRUCTION

We extended the unbiased diffeomorphic atlas construc-

tion method described in [16] to incorporate multi-structure

registration. The new multi-structure cost for computing the

population average grayscale image, defined as the image Ī
that has minimal distance to each image in the database, is

extended from the single channel [16] version to give :

{ϕ̄i, Ī} = argmin
ϕi∈G,I∈I

M
∑

j=1

(
∫ 1

0

‖vj
t ‖

2
V dt

+ λMR‖IMR ◦ ϕi − IMR
j ‖2

L2

+

N
∑

i=1

λSeg,i‖ISeg,i ◦ φ1,0 − ISeg,i
j ‖2

L2

)

,

(2)

For fixed transformations ϕi, the average image is:

Ī = (1/M)

M
∑

j=1

|Dϕj |
∑M

k=1 |Dϕk|
Ij ◦ ϕj , (3)

where Ī is a multi-channel image consisting of ĪMR and N
segmentation channels, ĪSeg,i. We optimize the cost using

an iterative algorithm:

Input: Set of images I1, I2, . . . , IM

Output: Ensemble average Image Ī

Set iteration number n = 0, v
j(n)
t = 0, ϕ

(n)
j = id ;

while
∑M

j=1

∫ 1

0
‖v

j(n+1)
t ‖2

V dt <
∑M

j=1

∫ 1

0
‖v

j(n)
t ‖2

V dt

do

Ī(n)(x) = (1/M)
∑M

j=1

|Dϕ
(n)
j (x)|

∑

M
k=1 |Dϕ

(n)
j (x)|

Ij◦ϕ
(n)
j (x);;

foreach Ii do

while Optimum not found do
Compute gradient for multi-structure

LDDMM cost (equation 1), ∇vj(n)E(vj(n))
for matching Ī(n) to Ij ;

Compute new velocity

v
j(n+1)
t = v

j(n)
t − ǫ∇vj(n)E(vj(n));

end

end

end
Algorithm 1: Multi-structure unbiased LDDMM average

Upon generation of the population average brain image,

ĪMR, we then used Freesurfer’s cortical reconstruction on

the average volume to create a population average cortical

surface. Thus, the end result is a volumetric and cortical

surface-based population average consisting of an average

MR image and it’s corresponding cortical surface.

D. EXPERIMENTS

We carried out inter-subject brain registration experiments

to test the performance of single channel LDDMM reg-

istration (MR image only), and multi-structure LDDMM

registration (MR images with subcortical and cortical con-

straints). We chose not to skull strip the images since any

inconsistencies in the automated skull stripping could cause

mapping errors in the registration as left-over skull could be

mapped to the brain or vice versa.

For each hemisphere, we used a subset of the subcortical

structures consisting of: lateral ventricle, caudate nucleus,

putamen, pallidum, nucleus accumbens, thalamus, hippocam-

pus and amygdala, and we used all 34 cortical region labels,

as listed in [12]. We smoothed the binary segmentations with

a Gaussian neighbourhood filter (σ = 2) to eliminate the

sharp boundaries present.

We ran this registration algorithm for 256x256x128 whole

brain images with Dell R900 compute servers having 12x3.6

GHz Xeon processors and 128 GB of memory.

For comparison to an existing brain registration method,

we used IRTK [6], which uses B-spline free-form deforma-

tions and was ranked as one of the top-performing brain

registration algorithms in a recent evaluation [7]. The inter-

subject brain registration experiments used MR images from
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the Internet Brain Segmentation Repository (IBSR), and the

population average used MR scans from 10 elderly subjects.

III. RESULTS

To quantify registration accuracy, we transformed the

manual segmentations and cortical surfaces of the target

brain images to the template space, and compared the prop-

agated segmentations and surfaces to the template manual

segmentations and surfaces both qualitatively (visualization),

and quantitatively (volumetric overlap and boundary distance

errors). Volumetric overlap was measured using the Dice

similarity coefficient: DSC(A, B) = 2 V (A∩B)
V (A)+V (B) where

V (A) and V (B) are the volumes of binary segmentations

A and B. Boundary distance errors for a given pair of

surfaces were measured using a symmetrized mean sur-

face distance, SD(A, B) = max sd(A, B), sd(B, A), where

sd(A, B) = 1
NA

∑

a∈A minb∈B d(a, b), is the directed mean

surface distance.

Figure 1 plots the volumetric overlap metrics for the man-

ual segmentations propagated with LDDMM, Multi-structure

LDDMM, and IRTK for comparison. We see here that

LDDMM registration has higher overlaps for IRTK for most

structures, and multi-structure LDDMM further improves

these, most notably in the hippocampus and amygdala.
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Fig. 1. Dice similarity coefficients for the propagated target manual
segmentations (IBSR10 − IBSR18) and the template manual segmen-
tations, shown for single channel LDDMM registration (LDDMM), with
added multi-structure constraints (Multi-structure LDDMM) and B-spline
registration (IRTK). The mean of the 9 subjects is shown for each structure,
with error bar height equal to the standard deviation.

For each cortical parcellation given by Freesurfer (34

different labels on each hemisphere), we computed the mean

surface distance between the template cortical surface and

each propagated target cortical surface. A visualization of

the mean surface distances on the cortical surface of the

template brain is shown in Figure 2, comparing LDDMM

and multi-structure LDDMM registration; the multi-structure

registration is shown to further reduce the mean surface

distance in the cortex to less than 2 mm.

For a qualitative comparison of cortical registration, Figure

3 shows a representative sagittal slice of the template brain

with the reference and propagated cortical surfaces outlined.

Here we see a clear improvement in registration when

cortical segmentation constraints are added.

Results for our multi-structure population average are

shown in Figure 4, along with the population average gen-

erated using single-channel MR-only LDDMM registration.

The cortical surfaces shown were reconstructed and parcel-

lated from the average volumes using Freesurfer.

LDDMM Multi-structure LDDMM

Fig. 2. Mean surface distance: Visualization of the left (top) and
right (bottom) cortical surface of the template brain, with each cortical
parcellation coloured with the mean surface distance (mm) in that region
to it’s corresponding parcellation in the transformed target brain. Single-
channel LDDMM registration (left) is compared to multi-structure LDDMM
registration (right).

Reference LDDMM Multi-structure

Fig. 3. Sagittal MR slices of the template brain (IBSR09) showing cortical
surface outlines generated on the template brain (Reference), and propagated
from one of the target brains (IBSR10) using single-channel (LDDMM),
and Multi-structure LDDMM registration.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we have presented a fully automated and

novel multi-structure whole brain registration method by

simultaneous matching MR grayscale images and explicitly

incorporating penalty for mismatch of cortical and subcorti-

cal segmentations. The results for whole brain MR images

using this multi-structure method are promising, with notable

improvements in cortical as well as subcortical alignment.

Application of this method to generate a population average

grayscale image gives a resulting average image the exhibits

the major cortical folds well enough for cortical surface

reconstruction through Freesurfer.

Population averages are a valuable tool for interpretation,

visualization and processing of anatomical data [16], [17],

[18], [19]. It is known that the misalignment in registration

leads to a blurred average brain image [20], as can be seen

in the MNI305 atlas [1], which used a low dimensional

transformation model for normalization, and also in recent
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