
  

   

Abstract—2D-3D image registration has been adopted in 
many clinical applications such as image-guided surgery and 
the kinematic analysis of bones in knee and ankle joints. In this 
paper we propose a new single-plane 2D-3D registration 
algorithm which requires far less iteration than previous 
techniques. The new algorithm includes a new multi-modal 
similarity measure and a novel technique for the analytic 
calculation of the required gradients. Our experimental results 
show that, when compared to existing gradient and non-
gradient based techniques, the proposed algorithm has a wider 
range of initial poses for which registration can be achieved 
and requires significantly fewer iterations to converge to the 
true 3D position of the anatomical structure. 

I. INTRODUCTION 

Image registration is the process of spatially aligning one 
image to another. Registration algorithms consist of two 
main components: a similarity measure and an optimization 
technique [1].  

If the images to be registered are captured using different 
sensors, multi-modal similarity measures such as Mutual 
Information (MI), Cross-Correlation, Correlation Ratio [2, 
3] and more recently Cross-Correlation Residual Entropy 
(CCRE) [4] can be adopted. All these similarity measures 
quantify the relationship between two images using 
probability distributions rather than intensity values.  

Optimization techniques can be categorized as either 
gradient or non-gradient-based approaches. The non-
gradient-based approaches do not require a numerical or 
analytic calculation of the gradient of the similarity measure 
at each iteration of the optimization search. The most 
commonly used non-gradient approaches are Powell’s 
conjugate direction search and the downhill simplex method. 
The gradient-based approaches include: steepest descent, 
quasi-Newton, conjugate gradient and non-linear least 
squares methods (which include the classic Gauss-Newton 
and Levenberg-Marquardt algorithms) [1]. These 
approaches can be further divided into those that calculate 
the required gradients numerically and those that use an 
analytic approach. Numerically calculating the gradients 
involves perturbing the position of the 3D volume in a small 
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positive and negative direction from the current position for 
every 3D transform parameter. Analytically calculating the 
required gradients at each iteration does not require these 
small perturbations and is the fastest of all techniques. 

2D-3D image registration has been adopted in many 
clinical applications such as image-guided surgery and the 
kinematic analysis of bones in knee and ankle joints. The 2D 
image is typically a single X-ray or Fluoroscopy video frame 
and the 3D image is typically 3D CT or MRI data of the 
same anatomical structure. A distinction should be made 
between those 2D-3D registration algorithms which use two 
or more 2D views as compared to those that use a single-
plane view. Techniques which use multiple 2D views have 
the advantage of more 2D information to correctly 
determine the true 3D pose of the anatomical structure. The 
disadvantage of these techniques is the requirement for two 
fluoroscopy units to be specially setup for this purpose 
which is costly and not normally required for standard 
medical imaging procedures. It also limits the field of view 
of the images captured to the relatively small area where the 
two X-ray sources intersect and requires a double dose of 
radiation for each patient.  

The optimization procedures used in previously reported 
single-plane 2D-3D algorithms include many non-gradient 
approaches (see for example [5, 6]) and gradient-based 
approaches using numerically calculated gradients (see for 
example [7, 8]).  

In this paper we propose a new single-plane 2D-3D 
registration algorithm which requires far less iteration than 
previous techniques. The new algorithm includes a new 
multi-modal similarity measure and a novel technique for 
the analytic calculation of the required gradients.   

II. 2D-3D REGISTRATION ALGORITHM 
In this paper, the new registration algorithm is described 

for the application of registering 2D fluoroscopy data to 3D 
CT data for the kinematic analysis of knee joints. However 
the new techniques described in the algorithm can be 
utilized in any 2D-3D registration applications. 

There are 6 parameters that describe the 3D rigid-body 
motion of the object depicted by the 3D data. These 6 
parameters control translation in the x, y and z directions 
(denoted by Tx, Ty and Tz respectively) and rotation about the 
x, y and z axes (denoted by Rx, Ry and Rz respectively) as 
shown in Figure 1. 
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For every iteration of the registration algorithm a 3D 
rigid-body geometric transform is applied to the CT volume 
to produce a change in the 3D position of the bone. The 3D 
volume is then reduced to a 2D digitally reconstructed 
radiograph (DRR) by summing the voxel values of the 
transformed CT volume in the z direction. Both the DRR 
and fluoroscopy frames are then filtered using a Laplacian-
of-Gaussian (LoG) filter to highlight the edges of the 
objects. This LoG filtering approach to emphasize the edges 
of bony structures was also adopted by Ma in [9]. 

A. Similarity Measure: Sum of Conditional Variances 
Assume pixel values of the filtered DRR are denoted by 

iI  and pixel values of the filtered fluoroscopy frame are 
denoted by iR . Here the subscript i indicates the pixel value 
at coordinates ( )ii yx ′′,  and ( )ii yx ,  in I and R respectively 
for i = 1 … N pixels in the images. 

The new multi-modal similarity measure calculates the 
sum of the conditional variances (SCV) for images I and R 
and is given by  
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where ( )E  denotes the expectation operator, j∆  denotes a 

set of histogram bins that span the range of values in R and 
m is the vector of motion parameters [ ]Tzyxzyx RRRTTT  

where [ ]T  denotes the matrix transform operation. The 
conditional mean required in (1) is calculated using the joint 
probability distribution of I and R. Equation (1) can be 
rewritten in the form 
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where  
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and k∆  is the histogram bin which includes iR . 
The expression for S in (2) is now in the same form as the 

sum-of-squared difference (SSD) similarity measure. This 
form is convenient as it can be used directly in standard non-
linear least squares optimization approaches. However, 
unlike SSD, since R̂  is calculated using the joint probability 
distribution of I and R, it is possible to use this measure for 
multi-modal registration problems. 

B. Optimization Algorithm: Gauss-Newton 
The optimization procedure is required to find the values 

of the 3D rigid-body transform parameters which minimize 
S. The first step in describing the minimization process is to 
estimate the values of S in a small neighbourhood around the 
current value of m using a second order Taylor series 
approximation as follows: 

 ( ) ( ) ( ) ( )pmpmpmpm SSSS TT 2
2
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The value of the vector p that minimizes S(m+p) in the local 
neighbourhood of m is required at each iteration of the 
optimization procedure. This vector can be found by setting 
to zero the derivative of S(m+p) with respect to p and 
rearranging as follows: 

 ( )( ) ( )mmp SS ∇∇−= −12  (5) 

The gradient of S is defined by  
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For the Gauss-Newton optimization algorithm, the Hessian 
matrix ( )mS2∇  is approximated as follows: 

 ( ) ( ) ( )TS mJmJm =∇2  (8) 

where the N columns of J are given by 

 ( )mJ ii Ê∇= . (9) 

Using equations (5) to (9) it is now possible to iteratively 
update the 3D rigid-body motion parameters until a 
minimum for S is found. For each iteration, an estimate of 
the parameter update vector p is calculated and these 
updates are then added to the transform parameters. A new 
version of the filtered DRR I is used in the next iteration and 
the process continues until some threshold is reached, e.g. a 
minimum change in m or S. 

The proposed 2D-3D registration algorithm also includes 
a new technique to calculate the gradients of the registration 
error with respect to out-of-plane rotations Rx and Ry for use 
in (7). The required formulae for these gradients are not 
easily defined since these parameters describe 3D motion 
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Fig. 1. The 6 parameters that are used to describe 3D rigid-body motion. 
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and must be estimated using only images from a single 2D 
view of the object. 

In the proposed algorithm these gradients are given by 
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where xIi ′∂∂  and yIi ′∂∂  are the ith pixels in the 
horizontal and vertical spatial gradient images of I 
respectively. The pixel values of iẑ  are an estimate of the z 
coordinates of the edges of the 3D object and are given by 
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where Ve is a Laplacian-of-Gaussian filtered version of the 
segmented 3D CT data.  

To increase the range of initial displacements for which 
the algorithm will converge to the global minimum, a 
coarse-to-fine approach is adopted. This is achieved by 
applying the algorithm using progressively narrower LoG 
filter kernels. The wider filter kernels produce a much 
smoother edge image which allows the algorithm to avoid 
being trapped in a local minimum. The narrower filter 
kernels have a more limited range for which the algorithm 
will converge but provide greater accuracy. The parameters 
produced by the smoother edge image are used as the initial 
parameters in the following stage which uses a narrower 
filter kernel. This approach enables the algorithm to 
successively produce a more accurate registration result. 

III. EXPERIMENTAL RESULTS 
To evaluate the performance of the new registration 

algorithm we compared the algorithm with two other 
techniques. The first was a non-gradient based approach 
using Powell’s conjugate direction optimization algorithm 
and SCV as the similarity measure. Powell’s algorithm has 
been shown to perform well in many non-gradient based 
approaches [1]. The second approach was a gradient-based 
approach using Gauss-Newton optimization and CCRE as 
the similarity measure. When compared to mutual 
information, CCRE has been shown to provide faster 
convergence to the global maximum and a greater range of 
initial disparities for which successful convergence can be 
obtained [4, 10]. For this approach the values for the 
gradient vector and the Hessian matrix were calculated using 
the approach defined in [11]. All the approaches were 
performed in three stages with progressively narrower LoG 
filter kernels used in each stage. 

The algorithms were used to register segmented 3D CT 
data of a female tibia and femur to synthetic fluoroscopy 
images that were generated using the CT data. We have used 
low-resolution versions  of the original data for this 
experiment where 1 pixel = 1 mm. The synthetic 
fluoroscopy images were generated using a logarithmic 
attenuation function on the sum of the voxel values of the 

un-segmented CT data along rays that simulate the path of a 
point source of X-rays. The use of the logarithmic 
attenuation function and the inclusion of soft tissue and 
other bones produces a synthetic fluoroscopy image that has 
almost identical properties to a real fluoroscopy frame. 
Figure 2 (a) shows the synthetic Fluoroscopy frame of the 
tibia and Figure 2 (b) shows the DRR produced from the CT 
data at the same position that was used to generate the 
fluoroscopy frame. Figure 2 (c) and (d) show the LoG 
filtered versions of the fluoroscopy frame and the DRR 
respectively for the LoG filter kernel used in the second 
stage of the registration algorithm. Note that the bones used 
in these experiments contained implanted tantalum beads but 
these were not used in the evaluation process. The exact 3D 
position of the CT data that was used to produce the 
synthetic fluoroscopy image is known and is used as the 
gold standard for measuring registration errors. 

To test the algorithm, a known 3D rigid body transform 
was applied to the segmented CT data of the bones. Each of 
the algorithms was then used to register this data to the 
synthetic fluoroscopy frame. The true 3D rigid body 
transform parameters that align the CT data with the 
fluoroscopy frame are all exactly zero, so the goal of the 
registration algorithms was to produce a final set of 
transform parameters that are as close to zero as possible. 
The registration error is therefore defined as the RMS error 
between the transform parameters and an all zero vector and 
is given by 

 222222
zyxzyxr RRRTTTE +++++=  (12) 

The values for the translational and rotational parameters 
were measured in pixels and degrees respectively. It is worth 
noting that registration error due to translational and 

(a) (b)

(c) (d)
 

Fig. 2  (a) Synthetic fluoroscopy frame, (b) DRR produced from CT 
data, (c) LoG filtered version of (a), (d) LoG filter version of (b) 
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rotational parameters should ideally be expressed separately. 
However, for conciseness we have combined them to show 
the cumulative effect. Moreover, our experiments show that 
this combined error quite accurately reflects the registration 
error due to individual parameters over iterations.  

A set of 100 initial 3D positions for each bone was used 
with transform parameters uniformly randomly distributed 
between -5 and +5. The registration algorithm was assumed 
to have failed if any of the final parameters had a magnitude 
greater than 3. The proposed approach was successful for 
96% of the initial positions while the gradient-based 
approach using CCRE and the non-gradient approach were 
successful for only 62% and 49% of the initial positions 
respectively.  

All four initial positions for which the proposed algorithm 
failed contained a parameter which had a value close to 5. 
This indicates that the limit to the capture range of the 
algorithm is approximately ±4 pixels of translation and ±4 
degrees of rotation. This range could possibly be extended 
by using more coarse stages with larger LoG filter kernels. 

Figure 3 shows the average registration error at each 
iteration for the successful registration attempts performed 
by the three algorithms. For clarity only the first 45 

iterations are shown, however the CCRE gradient-based 
algorithm required between 75 and 100 iterations to 
converge to a maximum and the non-gradient algorithm 
required between 150 and 200 iterations to converge. The 
proposed approach required only 30 to 35 iterations to 
estimate the true 3D pose of the tibia. 

IV. CONCLUSIONS 
In this paper we have presented a new 2D-3D registration 

algorithm for applications when only a single 2D view is 
available. The proposed approach includes a new multi-
modal similarity measure that is based on calculating the 
sum of conditional variances from the joint probability 
distribution of the two images to be registered. Unlike 
existing multi-modal similarity measures, this new measure 
allows the gradient vector and Hessian matrix required for 
standard non-linear least squares approaches to be calculated 
using the same procedure as that used for SSD. The 
algorithm also includes a novel technique for calculating the 
gradient of the registration error for out-of-plane rotations. 

Our experimental results show that, when compared to 
existing gradient and non-gradient based techniques, the 
proposed algorithm has a wider range of initial poses for 
which registration can be achieved and requires significantly 
fewer iterations to determine the true 3D position of the 
anatomical structure. 
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Fig. 3  Average registration error at each iteration for the (a) tibia and 
(b) femur of the knee. 
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