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Abstract— A method is proposed to register three multi-
modal medical data, where none of the images are superim-
posed. Contrary to previously presented solutions that per-
form more simultaneous registrations after one-by-one, present
method registers all images in parallel. The method minimizes
the registration error by seeking the optimum of a vector in-
cluding rigid transformation parameters of both reslice images.
To measure the similarity among all three images, a higher di-
mensional extended normalized mutual information have been
adopted. Comparison with simultaneous methods have been
performed on brain and femoral multi-modal image triples.
Based on the comparative results, presented parallel method
significantly outperforms the simultaneous methods in both
translation and rotation registration error minimizations. On
the contrary, the simultaneous methods need less computational
time to converge.

I. INTRODUCTION

Automated algorithms built on mutual information [1],[2]

have been successfully adopted and widely used in med-

ical fusion applications. Most of these solutions focus on

dual modality registration, although registering three images

becomes necessary in some certain cases. When the regis-

tration of more than two images is desired, the method to

superimpose all of them depends on the manner of their inter-

image geometry [3]. In case of images having known inter-

image geometry, all of them except one are superimposed,

hence one unknown transformation need to be determined.

Several methods have been proposed for these cases. Ander-

sson and Thurfjell [4] registered two PET transmission and

emission scans to two differently weighted MRI images by

an extended joint histogram. Boes and Meyer [5] registered

three MRI brain slices by an extended mutual information

similarity measurement. Studholme et. al [6] registered a

PET image to an MRI by including the segmentation of the

MRI as a third image. In recent studies pulmonary [7] - as

well as cardiac [8] image triples have been superimposed by

an extended normalized mutual information.

When the inter-image geometry of the images is un-

known, none of them are superimposed, hence more than

one transformations need to be found. Most of the related

studies choose a master reference image from the whole and

register all other images to the chosen one simultaneously

[9], [10], [11], [12], [13]. A hybrid solution performs a dual

registration between two of the images first, then registers
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the third one to the previously superimposed ones by an

extended similarity measurement [14].

The drawback of simultaneous methods appears when

different multi-modality images are registered, since the

choice of the master reference image might bring uncertain-

ties to the accuracy of the registrations [8]. On the other

hand if simultaneous depending registrations are performed,

inheritance of registration errors may occur.

To avoid the difficulties mentioned above, a role selection

invariant method is proposed in this paper, which performs

the parallel registration of two images to a third one by only

one optimization procedure and one extended normalized

mutual information similarity measurement.

II. MATERIALS AND METHODS

A. Parallel method

1) Image normalization: All image triples of the given

study have been re-sampled in the first step to have a (1

x 1 x 1) mm voxel size, then the images were cropped to

have equal size in all directions. Finally the gray values were

down sampled between 0 and 255 to speed up further joint

histogram related calculations [15].

2) Similarity measurement: The extended normalized mu-

tual information [8],[7] have been adopted to measure the

similarity among all three images during the optimal trans-

formations search. The equation of the extended NMI was

defined by (1).

−
H(A)+H(B)+H(C)

H(A,B,C)
(1)

where H(A), H(B) and H(C) is the Shannon entropy [16] of

images A, B and C respectively defined by (2). H(A,B,C)
is the joint Shannon entropy of images A, B and C defined

by (3).

H(I) = −∑
i∈I

p(i) log p(i) (2)

where p(i) is the probability of value i in image I.

H(A,B,C) = −∑
i∈A

∑
j∈B

∑
k∈C

p(i, j,k) log p(i, j,k) (3)

where p(i, j,k) is the joint probability of values (i, j,k) in

images A, B and C respectively.
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3) Optimization procedure: The Downhill-Simplex

method [17] has been adopted to minimize the cost function

defined by (1). This method optimizes all functional

parameters in parallel and has been successfully applied

in several studies focusing on mutual information based

multi-modal registrations [3]. Before the optimization

started, one image from the three were chosen as reference,

while the other two were both reslice images that had to be

superimposed to the reference one.

The method optimized two rigid transformations in par-

allel, hence the search was done on a 12 length vector.

During the search the first 6 and the last 6 parameters were

chosen as the transformation values of the first and second

reslice images respectively. After every parameter generation

released by the Downhill-Simplex method, the reslice images

were transformed by their corresponding transformation val-

ues. The similarity among all three images was measured

by (1) which was minimized to converge to the optimal

transformations.

B. Comparison with simultaneous and hybrid methods

In order to compare the parallel method to previously

proposed ones, the chosen reslice images were both super-

imposed to the reference one by performing a simultaneous

and a hybrid method as well.

1) Similarity measurements: The measurement for the

simultaneous registrations and for the first registration of the

hybrid method was the dual normalized mutual information

[18] defined by (4). The second extended measurement for

the hybrid method was calculated as defined by (5).

−
H(A)+H(B)

H(A,B)
(4)

−(−H(A,B)+H(C)−H(A,B,C)) (5)

where H(A) and H(B) is the Shannon entropy of images

A, and B respectively, defined by (2). H(A,B) is the joint

Shannon entropy of images A and B defined by (6).

H(A,B) = −∑
i∈A

∑
j∈B

p(i, j) log p(i, j) (6)

where p(i, j) is the joint probability of values (i, j) in

images A and B respectively.

2) Optimization procedure: Since in simultaneous and

hybrid cases only one reslice image was transformed during

the the given transformation search, a 6 parameter length

vector was optimized by using Downhill-Simplex method.

C. Implementation

Our transformations have been implemented to directly

operate with the video card based on CUDA SDK [19]. The

histogram as well as the entropy calculations were performed

by the CPU.

D. Patient data

Two patient triples – femoral MRI/CT/SPECT and brain

MRI/PET/SPECT – with unknown inter-image geometry

have been collected (see Fig. 1 and Fig. 2). All images

have been obtained at different time by different cameras,

hence none of them were superimposed. Both image groups

had advantageous properties by the means of the necessary

transformations, namely that all could be characterized by

rigid transformations. Femoral images represented only one

of the legs having rigid misalignments, while brain images

included only the brain itself which is naturally a rigid

organ. The resolution and voxel size of the collected data

are represented in Table I and Table II.

TABLE I

FEMORAL MRI/CT/SPECT RESOLUTION AND VOXEL SIZE

Modality Axial resolution Voxel size

MRI 512 x 416 0.78 x 0.78 x 5.20

CT 512 x 512 0.86 x 0.86 x 1.00

SPECT 128 x 128 4.80 x 4.80 x 4.80

TABLE II

BRAIN MRI/PET/SPECT RESOLUTION AND VOXEL SIZE

Modality Axial resolution Voxel size

MRI 256 x 256 1.00 x 1.00 x 1.00

PET 128 x 128 2.57 x 2.57 x 3.38

SPECT 128 x 128 2.90 x 2.90 x 2.90

E. Validation

Registration of the two image groups was performed by

all methods to compare them by the means of translation -

rotation errors and the number of iterations to converge to the

optimum. The validation of every individual transformation

was performed manually by a medical physician.

The result of the given method was visualized in a triple

modality fusion window (see Fig. 1 and Fig. 2 ). Correction

Fig. 1. Triple fusion of the brain MRI/PET/SPECT study superimposed
by the parallel registration method.
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Fig. 2. Triple fusion of the femoral CT/MRI/SPECT study superimposed
by the parallel registration method.

of the automatically determined transformations for both

reslice images was provided for the medical physician. The

possible manual modifications of all transformation parame-

ters for both reslice images were recorded. The registration

error of a method was considered to be the sum of the

registration errors of both reslice images. The number of

iterations as well as the runtime to converge to the optimal

transformations was recorded for all methods.

III. RESULTS

The parallel method significantly outperformed both si-

multaneous and hybrid methods in the registration error

parameters (see Table III and Table IV). There were no

significant differences in the number of iterations, although

the parallel method needed slightly more iterations. Since

the parallel method performed two transformations in one

iteration, it needed double time to converge to the optimum

(see Table V and Table VI) The simultaneous method

generated relatively higher misalignments in both groups.

The hybrid method inherited these misalignments and pro-

duced a higher registration errors, since it depended on an

initial dual transformation. The mentioned misalignments

were significantly high in Z direction, since one of the images

had a relatively higher voxel size in both groups in this

direction (see Table I and Table II).

TABLE III

FEMORAL MRI/CT/SPECT REGISTRATION ERRORS

Method x y z α β γ

Simultaneous 2.66 3.47 7.32 4.15 4.19 18.91

Hybrid 3.18 4.12 8.56 5.62 4.23 17.84

Parallel 2.98 1.34 4.17 4.01 3.98 4.38

Where (x, y, z) and (α,β ,γ) are translation and rotation
errors respectively.

TABLE IV

BRAIN MRI/PET/SPECT REGISTRATION ERRORS

Method x y z α β γ

Simultaneous 3.14 2.97 5.67 2.96 3.65 4.49

Hybrid 4.32 4.56 7.48 3.38 5.92 6.76

Parallel 3.38 3.42 3.65 2.23 3.76 3.27

Where (x, y, z) and (α,β ,γ) are translation and rotation
errors respectively.

TABLE V

FEMORAL MRI/CT/SPECT REGISTRATION ITERATIONS AND RUNTIME

Method Iterations Runtime (sec)

Simultaneous 184 98

Hybrid 176 93

Parallel 204 217

TABLE VI

BRAIN MRI/PET/SPECT REGISTRATION ITERATIONS AND RUNTIME

Method Iterations Runtime (sec)

Simultaneous 147 112

Hybrid 156 118

Parallel 174 265

IV. CONCLUSIONS AND FUTURE WORKS

Since only one optimization procedure minimized an ex-

tended measurement among all three images in the parallel

method, a global optimum among the images could be

achieved. Simultaneous and hybrid methods both represented

decreasing accuracy in those transformation parameters that

were associated with high voxel sizes (Table I and Table

II). It indicates the fact that these solutions have an increased

sensitivity of interpolation distortions originated from non-

uniform voxel sizes comparing them to the parallel method.

On the contrary, they need approximately half the time

the parallel method needs, since the last one performs two

transformations in one iteration. Considering that the parallel

method significantly outperforms previous solutions, it is

advised to be the subject of further investigations operating

with more than two unknown inter-image geometry images.

As the next step of our research, the parallel method will

be modified to operate with non-linear transformations in

order to superimpose medical image triples having non-linear

misalignments. A large number of multi-modal medical

image triples will be collected for more precise evaluations.
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