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Abstract— How to model shape variations plays an important
role in active shape models that is widely used in model-
based medical image segmentation, and principal component
analysis is a common approach for this task. Recently, different
tensor-based dimension reduction methods have been proposed
and have achieved better performances than PCA in face
recognition. However, how they perform in modeling 3D shape
variations of organs in terms of reconstruction errors in medical
image analysis is still unclear.

In this paper, we propose to use tensor-based dimension
reduction methods to model shape variations. We empirically
compare two-dimensional principal component analysis, the
parallel factor model and the Tucker decomposition with PCA
in terms of the reconstruction errors. From our experimental
results on several different organs such as livers, spleens and
kidneys, 2DPCA performs best among the four compared
methods, and the performance differences between 2DPCA and
the other methods are statistically significant.

I. INTRODUCTION

Modeling shape variations is a significant step in active

shape models [1] that is widely used in model-based medical

image segmentation. A standard method for this step is

principal component analysis (PCA). Unlike PCA that uses

vector-based representations, varied tensor-based dimension

reduction methods [2][3][4] have been recently proposed and

achieved better performances than PCA in face recognition.

In contrast with conventionally using a vector representa-

tion to represent a shape, tensor-based dimension reduction

methods can represent a shape by a two-dimensional matrix

directly or can represent the whole training set of shapes as

a tensor [5]. For example, two-dimensional principal compo-

nent analysis (2DPCA) [2] constructs the image covariance

matrix directly by using the original image matrices without

transforming them into 1D vectors and uses its eigenvectors

as principal components. The parallel factor model (Parafac)

[6][5] and the Tucker decomposition [7][5] are two major

tensor decomposition methods that decompose a tensor into

components.

However, we have not seen any work that has used

tensor-based dimension reduction methods in medical image

analysis except [8] that compared 2DPCA [2] with PCA on

a normal/abnormal left ventricle shape classification task. In

addition, in contrast with previous papers that mainly focus

on classification, our work requires accurate 3D reconstruc-

tions of 3D organs whose shape can vary significantly.

In this paper, we propose to model shape variations with

tensor-based dimension reduction methods. We report on
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our empirical comparison of four reconstruction methods,

including PCA, 2DPCA, Parafac and the Tucker decompo-

sition, on several different organs such as livers, spleens

and kidneys. From our experimental comparisons, 2DPCA

achieves the best performance among the four compared

methods and there are statistically significant differences

between the performance of 2DPCA and those of the other

methods.

II. METHODS

Assume that we have a training set of N 3D shapes

and each shape is represented by M 3D landmark points.

Conventionally, we can represent each such shape by a vector

of 3M × 1.

A. PCA

The total scatter matrix S is defined as

S =

N∑

i=1

(xi − x̄)t(xi − x̄) (1)

where xi is the i-th training shape vector and x̄ is the mean

shape vector as defined below.

x̄ =

∑N

i=1 xi

N
(2)

PCA finds a projection axis b that maximizes b
t
Sb.

Intuitively, the total scatter of the projected samples is

maximized after the projection of a sample onto b. The

optimal L projection axes bl, l = 1, . . . , L that maximize

the above criterion are the eigenvectors of S corresponding

to the largest L eigenvalues1. For a shape vector x, we can

use its reconstruction x̃ defined below to approximate it.

x̃ = x̄ +

L∑

l=1

clbl (3)

where cl = (x − x̄)t
bl.

B. Tensor-Based Dimension Reduction Methods

In contrast with conventionally using a vector representa-

tion to represent a shape, tensor-based dimension reduction

methods represent a shape by a two-dimensional matrix

representation. In other words, let X be a 3 × M matrix

to represent a shape. In the following, we give a very

brief introduction on tensors. For more details about tensors,

please refer to [5]. A tensor is a generalization of vectors

1To be consistent, we will use L in the following discussions to denote
the number of components used in reconstructing a shape.

5838

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



and matrices. The order (or mode) of a tensor is the number

of dimensions. We use a third-order tensor X ∈ R3×M×N

to represent the whole training set of N shapes where the

first mode represents the x,y,z dimension of a point, the

second mode represents the order of points and the third

mode represents different patients. Although we focus on

using third-order tensors in this paper, it is easy to extend

our concepts to higher-order tensors. For example, if the

above training set changed at regular intervals of time, then a

fourth-order tensor in which the fourth order represents time

can be used.

1) 2DPCA: 2DPCA [2] projects a shape matrix X, which

is a 3×M matrix onto a vector, b, which is a M ×1 vector,

by the linear transformation.

c = Xb (4)

The image scatter matrix G is defined as

G =

N∑

i=1

(Xi − X̄)t(Xi − X̄) (5)

where Xi is the shape matrix that represents the i-th training

shape and

X̄ =

∑N

i=1 Xi

N
(6)

Similar to PCA, the goal of 2DPCA is to find a projection

axis that maximizes b
t
Gb. The optimal L projection axes

bl, l = 1, . . . , L that maximize the above criterion are the

eigenvectors of G corresponding to the largest L eigenvalues.

For a shape matrix X, we can use its reconstruction X̃

defined below to approximate it.

X̃ = X̄ +

L∑

l=1

clbl
t (7)

where cl = (X − X̄)bl.

2) Parallel Factor Model: Parafac [6][5] factorizes a

tensor into a weighted sum of component rank-one tensors

[5]. In other words, given a tensor X ∈ RI×J×K , Parafac

decomposes it as

X ≈

L∑

l=1

λlal ◦ bl ◦ cl (8)

where al ∈ RI×1, bl ∈ RJ×1, cl ∈ RK×1, λl ∈ R1 for l =
1, . . . , L and ◦ represents the vector outer product [5]. The

alternating least squares (ALS) method [6][5] is commonly

used to find the Parafac decomposition.

After the decomposition is computed, for a test shape,

different methods [9][10] can be used to find the associated

coefficient vectors and to compute the reconstruction that

approximates it. In this paper, we follow the linear projection

method in [9]. Given a shape matrix X, we calculate its

reconstruction X̃ =
∑L

l=1 clλlal ◦ bl to approximate it by

solving the following equation.

min
X̃

||X − X̃|| (9)

where ||X|| is the Frobenius norm of X.

(a) Livers (b) Left kidneys

(c) Right kidneys (d) Spleens

Fig. 1: The 3D triangular meshes of different organs we use

in the experiments.

3) Tucker Decomposition: In contrast with Parafac, which

decomposes a tensor into rank-one tensors, the Tucker de-

composition is a form of higher-order principal component

analysis that decomposes a tensor into a core tensor mul-

tiplied by a matrix along each mode [5]. Given a tensor

X ∈ RI×J×K , the Tucker decomposition is given by

X ≈ G ×1 A ×2 B ×3 C (10)

=

P∑

p=1

Q∑

q=1

R∑

r=1

gpqrap ◦ bq ◦ cr (11)

where G ∈ RP×Q×R is called the core tensor, A ∈ RI×P ,

B ∈ RJ×Q,C ∈ RK×R, ap ∈ RI×1 is the p-th column

in A, bq ∈ RJ×1 is the q-th column in B, cr ∈ RK×1 is

the r-th column in C and ×n is the n-mode matrix product

operator for multiplying a tensor by a matrix in mode n [5].

ALS can be used to find the Tucker decomposition.

Let V(3) be the matrix formed by mode-n matricizing [5]

the tensor G×1A×2B with respect to the third mode. Based

on the above linear projection idea [9], given a shape vector

x, we calculate its reconstruction x̃ =
∑L

l=1 clvl where vl

is the l-th column of V(3) to approximate it by solving the

following equation.

min
x̃

||x − x̃|| (12)
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III. EXPERIMENTAL RESULTS AND DISCUSSIONS

We have 3D mesh models of 20 livers, 17 left kidneys,

15 right kidneys, and 18 spleens as shown in Figure 1. All

these 3D triangular meshes are constructed from CT scans of

different patients and the 3D point correspondence problems

among different 3D mesh models of the organs are solved2.

All the mesh models of the same organ have the same

number of vertices (2563) and the same number of faces

(5120), and all vertices are used as landmarks to represent

shapes. The tensors are constructed in the similar manner

described in [9][10]. The task is to measure the difference

between an unknown shape model and its reconstruction.

We use leave-one-out cross validation to determine how

accurately an algorithm will be able to predict data that it

was not trained on. In order to reflect different definitions

of shape similarities, two different commonly used metrics,

Euclidean distances (i.e, the sum of the distances between all

pairs of corresponding landmarks) and Hausdorff distance3,

are used to measure the shape difference between two shapes.

We use the tensor library [12] for tensor decomposition.

In addition, we further investigate how the numbers of

components, L, affect the reconstruction errors.

The experimental results are shown in Figures 2 and 3.

From these figures, we can see that 2DPCA performs best

among the four methods, the Tucker decomposition performs

slightly better than PCA and the Parafac decomposition is the

worst. In fact, the performance differences between 2DPCA

and other methods are statistically significant4. In addition,

as the numbers of components increase, the reconstruction

errors of all methods and the differences among different

methods decrease. While 2DPCA and PCA had similar

computation time in our experiments, the Parafac method

and the Tucker decomposition were an order of magnitude

slower.

We attribute the poor performance of the Parafac method

to the limited expressiveness of rank-one tensors and vector

outer products. Our results showing that the performance of

2DPCA is better PCA are in line with those reported for face

recognition [2]. As explained in [2], because the dimension

of the image scatter matrix is much smaller than that of

the total scatter matrix, and we deal with small sample size

problems where the number of training examples is much

smaller than the dimensions of a shape, 2DPCA can capture

2We constructs the shape of an organ from manual segmentation of CT
scans of a patient by using marching cubes in ITK-SNAP and then uses
[11] to find correspondences among shape models.

3Given a pair of two 3D point sets, A and B, the Hausdorff distance
between A and B is given by:

H(A, B) = max{min
p∈A

min
q∈B

d(p, q), min
q∈B

min
p∈A

d(p, q)} (13)

where d(p, q) is the Euclidean distance between two 3D points, p and q.
To compare a pair of two shapes, the Hausdorff distance between the two
vertex sets of this given pair of shapes is computed.

4Given a method and a number of eigenvectors, a group of the reconstruc-
tion errors collected from each leave-one-out test was created. For a pair
of two such groups, a standard two-sample t-test procedure was performed
for comparing it. If the p-values is less than the reference probability, the
result is statistically significant.
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Fig. 2: Reconstruction errors in terms of Euclidean distances

for different organs.

more accurate covariance information than PCA. Another

possible reason is that the spatial dependencies between x,

y and z are better preserved in 2DPCA.

Although the Tucker decomposition is a form of higher-

order principal component analysis [5], its marginal im-

provement over PCA may be ascribed to the use of the

linear projection method to compute the reconstruction, as

the potential power of the tensor may be lost in this step. In

contrast with the better performance gain from the Tucker

decomposition to PCA reported in [3][9][10], a possible

reason for the marginal improvement over PCA may be that

the number of training examples used in this paper is much

smaller than those used in these papers.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we propose to use different tensor-based

dimension reduction methods to model shape variations.

From our empirical comparisons of the reconstruction errors,

2DPCA is the best among the four compared methods and

the performance differences between 2DPCA and the other

methods are statistically significant. While we focus on mod-

eling shape variations, it is easy to apply our ideas to different

applications such as medical image classification and medical

image retrieval and to different data formats from varied

imaging modalities such as PET, MRI, ultrasound and CT

scans.

We are currently applying learned models from these

tensor-based dimension reduction methods to model-based
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Fig. 3: Reconstruction errors in terms of Hausdorff distances

for different organs.

organ segmentations. We will also investigate different ways

[13][10][4][5] to further improve 2DPCA and tensor decom-

positions. For example, the grid-sampling strategy [13] is

proposed to further improve the performance of 2DPCA. In

addition, in contrast to using the linear projection method,

a multilinear method that can simultaneously infer the coef-

ficient vectors in different modes [10] can be used to find

better reconstructions.
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