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Fig. 1: Open Gate MOSFET with Hafnium Oxide a
with the body of a neuron in close proximity to the o
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Fig. 3: CV plot for 600 Å film on (100) silicon substrate.  Extracted Qss 
was 5x1011q/cm2. 

 

III. DESIGN FLOW FOR PROCESS DESIGN OF TRANSISTORS 
USED AS COMMON SOURCE AMPLIFIERS 

 
Once estimates for ߳௢௫  and Qss were found, the first step 

in designing a transistor process was to select the oxide 
thickness ( ௢ܶ௫) substrate doping (ܾܰ) pair for a given 
threshold voltage specification.  The threshold voltage for an 
MIS capacitor is given by[9]: ்ܸ ൌ Φ୫ୱ െ ቀQ౩౩ାQDC౥౮ ቁ ൅ 2ΦF . (1) 

Where Φ୫ୱ is the metal semiconductor work function, and 
the Aluminum/Silicon system is given by: Φ୫ୱ ൌ െ0.554ܸ െ ்ܷ ln ே್௡೔  . (2) 

Where ݊݅is the intrinsic carrier density (1.5x1010cm-3 at 
300K), and ܷܶ is the dynamical thermal voltage, which 
is given by: ்ܷ ൌ ௞௤்  (3) 
T is temperature in Kelvin, and k is the Boltzmann constant  
(1.38066x10-23J/K).  The charge of an electron (q) is 
1.6x10-19C. Cox is the gate oxide capacitance due to the 
dielectric and depends on the relative permittivity of the 
oxide and the thickness of the oxide: ܥ௢௫ ൌ ఢబఢ೚ೣ೚்ೣ . (4) ߳଴ is the permittivity of a vacuum ( 8.85x10-14F/cm) and ߳௢௫ is the relative permittivity of the oxide layer.  ߳௢௫ 
is 3.9 for silicon dioxide, and 18 for hafnium oxide. Qୱୱ is the fixed oxide charge due to defects in the oxide.  
The value of Qୱୱ depends on the growth conditions of the 
oxide. For silicon (100) oriented substrates with Si02 or Hf-
Oxide, insulators can vary between ~1010q/cm2 to 1012q/cm2.  QD is the charge in the depletion region under strong 
inversion and is given  by: ܳܦ ൌ െ2ඥ߳0ܾ߳ܵ݅ܰݍΦF. (5) ߳ܵ݅ is the relative permittivity of the silicon with a value of 
11.7.  ΦF is the Fermi level and represents the doping of the 
substrate is and energy band diagram, which is given by: 

ΦF ൌ UT ln Nౘ୬౟  . (6) 

Using equations 1-6, a hafnium oxide thickness (Tox) of 
620Å and a substrate doping (Nb) of 2.1x1017cm-3 produced a 
threshold voltage of 0.5Volts for a Qss of 5x1011cm2. 
 The next step was to use an electrical TCAD simulation to 
verify that a hafnium oxide thickness (Tox) of 620Å, 
substrate doping (Nb) of 2.1x1017cm-3,  ߳௢௫ =18, and 
Qss=5x1011q/cm2 will produce a threshold voltage of 
0.5Volts.   To this end, a 1-D simulation environment was 
created to draw the dimensions of the structure, adjust the 
grid spacing, perform an electrical simulation, and extract 
threshold voltage. Fig. 4 shows a MIS structure with a Tox of 
2000Å, with a grid spacing of 0.85um to illustrate the 
dimensions properly.  Fig 5 shows the capacitance voltage 
response of the target MIS structure properties of Tox= 620Å, 
Nb =2.1x1017cm-3,, ߳௢௫ =18, and Qss=5x1011q/cm2. The 
inversion region can be seen around 0.5 volts.  A grid 
sensitivity analysis was performed to find the optimum grid 
spacing (0.01um) by reducing the grid spacing until the 
extracted threshold voltage converged. The capacitance-
voltage (CV) extraction methodology can be requested from 
www.mdc.com.  The extracted threshold voltage was 
0.5095V which is less than one UT (26mV at 300K) from the 
value predicted from equations (1)-(6) of 0.508V.  The 
difference of 1.5mV can be explained by the fact that the 
depletion width and thus, the depletion capacitance are 
approximated.  Another important use of this ‘as drawn’ 
simulation environment is that the simulation and extraction 
methodology is verified.  The approximate CPU time to 
draw and simulate the structure was 1 minute. 

  
Fig. 4: Structure used to verify ‘as dawn’ MIS capacitors.  Grid 
Spacing 0.085um, Tox=0.2um (Tox set larger than specification for 
clarity), Nb=2.1x1017cm-3. The simulator automatically invokes 1-D drift 
and diffusion simulation at each grid line.  The aluminum top and 
bottom contacts are invoked at the top and bottom interfaces of the 
structure. VT=2.59V, for Qss=5x1011q/cm2, ࣕ18=࢞࢕. 
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Fig. 5: Capacitance Voltage Plot Hafnium Oxide M
Grid Spacing 0.01um, Tox=0.062um, Nb=2.1x1017cmࣕ18=࢞࢕, Extracted VT=0.5095 Volts. The area of the 
3x10-8cm2. 
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Fig. 6: Three boron doping profiles (atoms
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in good agreement with 1-D simulation.  The implication of 
this is that the Tox and Nb can be explored at 5 minutes a 
simulation and then verified for a single 20 minute 
simulation. 
 
   

 
Fig. 8: 2-D process simulation of Hafnium oxide based transistor. 
(E=100kV, Q=3x1014ions/cm2), Well Drive (1150oC, 1440minutes), Field 
oxidation (wet 1100oC, 60 minutes), Source/Drain Diffusion (1100oC, 60 
minutes), and a 620 Å hafnium oxidation deposition/annealing step. 
The extracted VT from a 2-D current voltage simulation was 0.587volts.  
A 550Å Tox gave a VT of 0.512V.  The actual length was shortened in the 
figure to improve clarity. 
 

  
Fig. 9: 2-D electrical simulation of a hafnium oxide based transistor. 
(E=100kV, Q=3x1014ions/cm2), Well Drive (1150oC, 1440 minutes), 
Field oxidation (wet 1100oC, 60 minutes), Source/Drain Diffusion 
(1100oC, 60 minutes), and a 620Å  hafnium oxidation 
deposition/annealing step. The extracted VT from a 2-D current voltage 
simulation was 0.587volts.  A 550Å Tox gave a VT of 0.512V.    

IV. CONCLUSIONS 
A design flow was developed to rapidly explore the 

design space for a HfO based transistor by using quick 1-D 
process simulations to narrow the range of structure 
parameters, and then verify the process recipe with a single 
long 2-D process simulation.  Hg probe CV results for 
thermally evaporated HfO films were used to increase the 
accuracy of the design.  Future work will include fabricating 
the transistors, and testing these in open gate configuration.  
The run decks for the process and electrical simulations can 
be found [14]. 

ACKNOWLEDGMENT 
The authors wish to thank Victor Pantelon for information 

technology support and Irma Alarcon for hardware 
installation and support.  Thanks to Synopsys for their 
donation of Sentaurus TCAD Suite and software support.  
Thanks to Synopsys and Intel for the donation of hardware 
for the TCAD teaching laboratory. 

REFERENCE 
 
[1] D. Parent and E. Basham, "A Course for Designing Transistors 

for High Gain Analog Applications," UGIM  Symposium 2008, 
pp. 75-78. 

[2] D. Parent and E. Basham, "Hafnium transistor design for neural 
interfacing," in Engineering in Medicine and Biology Society, 
2008. EMBS 2008. 30th Annual International Conference of the 
IEEE, 2008, pp. 3356-3359. 

[3] S. Schäfer, S. Eick, B. Hofmann, T. Dufaux, R. Stockmann, G. 
Wrobel, A. Offenhäusser, and S. Ingebrandt, "Time-dependent 
observation of individual cellular binding events to field-effect 
transistors," Biosensors and Bioelectronics, vol. 24, pp. 1201-
1208, 2009. 

[4] S. Capone, G. Leo, R. Rella, P. Siciliano, L. Vasanelli, M. 
Alvisi, L. Mirenghi, and A. Rizzo, "Physical characterization of 
hafnium oxide thin films and their application as gas sensing 
devices," Journal of Vacuum Science & Technology A: Vacuum, 
Surfaces, and Films, vol. 16, p. 3564, 1998. 

[5] A. Cohen, J. Shappir, S. Yitzchaik, and M. Spira, "Reversible 
transition of extracellular field potential recordings to 
intracellular recordings of action potentials generated by neurons 
grown on transistors," Biosensors and Bioelectronics, vol. 23, 
pp. 811-819, 2008. 

[6] F. Wallrapp and P. Fromherz, "TiO and HfO in electrolyte-
oxide-silicon configuration for applications in bioelectronics," 
Journal of Applied Physics, vol. 99, p. 114103, 2006. 

[7] C. Enz and E. Vittoz, Charge-based MOS Transistor Modeling: 
John Wiley & Sons, Chichester, 2006. 

[8] W. Zhu, T. Ma, S. Zafar, and T. Tamagawa, "Charge trapping in 
ultrathin hafnium oxide," IEEE Electron Device Letters, vol. 23, 
pp. 597-599, 2002. 

[9] S. Sze and K. Ng, Physics of semiconductor devices: Wiley-
Interscience, 2007. 

[10] S. Wolf, "Silicon Processing for the VLSI Era—vol. II, 1990," S. 
Wolf, Silicon Processing for the VLSI Era, vol. 2, pp. 104-105, 
1990. 

[11] R. Fair and J. Tsai, "Theory and Direct Measurement of Boron 
Segregation in SiO during Dry, Near Dry, and Wet O 
Oxidation," Journal of The Electrochemical Society, vol. 125, p. 
2050, 1978. 

[12] E. Lampin, F. Cristiano, Y. Lamrani, A. Claverie, B. 
Colombeau, and N. Cowern, "Prediction of boron transient 
enhanced diffusion through the atom-by-atom modeling of 
extended defects," Journal of Applied Physics, vol. 94, p. 7520, 
2003. 

[13] K. Taniguchi, K. Kurosawa, and M. Kashiwagi, "Oxidation 
enhanced diffusion of boron and phosphorus in (100) silicon," 
Journal of The Electrochemical Society, vol. 127, p. 2243, 1980. 

[14] www.engr.sjsu.edu/dparent/ee225a Accessed 17 April 2009 
 
 

5878


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

