
  

  

Abstract— In this paper we present a fast and reliable 
method for generation of molecular surfaces. While the method 
is readily applicable to van der Waals surface generation, we 
shall be focusing on solvent-accessible surfaces (SAS) and 
solvent-excluded surfaces (SES) of a molecule. A list-based 
method is utilized to represent and generate the union of 
multiple spheres with arbitrary radii, with which we are able to 
produce the SAS and SES of a molecule in a very efficient way. 
The surface generated is represented by a quadrilateral mesh, 
which can be easily converted into a triangular mesh if needed. 
Some results will be provided to demonstrate the speed and 
quality of our mesh generation algorithms.      

I. INTRODUCTION 
OLECULAR surface generation is critical not only in 

visualization of the 3D structure of a molecule but 
equally importantly in studying its biochemical and 
biophysical properties through mathematical simulations [1]. 
A molecule is composed of a number of atoms, each of 
which is mimicked by a 3D sphere specified by a unique 
center and radius. The van der Waals surface is simply the 
union of all such spheres with their intersecting portions 
removed. The center of the probing sphere rolling over the 
van der Waals surface gives rise to the so-called solvent 
accessible surface (SAS) [2]. The radius of the probing 
sphere is chosen as the size of the solvent molecules (usually 
water). Another widely used surface is known as solvent 
excluded surface (SES), defined as the “inward-facing” part 
of the probing sphere as it rolls over the molecules [2, 3]. 
The molecular surface can be represented analytically by a 
list of seamless spherical surface patches. 

 While other types of molecular surfaces, such as those 
based on the level set of a Gaussian-like smoothly decaying 
scalar function [4, 5] or based on the surface free energy 
minimization [6], have been investigated, the most 
commonly used definition of molecular surfaces is still 
based on the “hard-sphere” models as defined above. 
Therefore, in the rest of the present paper, we will restrict 
ourselves to this type of molecular surfaces. The MSMS 
(Maximal Speed Molecular Surface), developed by Sanner 
et al., is one of the most popular tools for generating surface 
triangulation of a molecule [7]. This tool has been widely 
used in molecular graphics, visualization, as well as 
biophysical simulation. While it works very efficiently and 
 

Manuscript received April 7, 2009. This work is supported in part by a 
subcontract from the National Biomedical Computation Resource (NIH P41 
RR08605). 

Z. Yu is with the Department of Computer Science, University of 
Wisconsin-Milwaukee, Milwaukee, WI 53211, USA. (phone: 414-229-
2960; fax: 414-229-6958; e-mail: yuz@uwm.edu).  

reliably for most molecules, it does frequently fail when the 
size of the molecules being considered increases to tens of 
thousands of atoms. Additionally, the triangular meshes 
generated by this tool sometimes contain self-intersections 
or unclosed polygons at some nodes, and some of the angles 
in the triangulation are either too small (close to 00) or too 
large (close to 1800) [5]. It is known that meshes containing 
too skinny triangles often cause poor approximation quality 
in finite or boundary element methods [8]. For these 
reasons, developing a reliable and high-quality mesh 
generation method is in great demand in molecular graphics, 
modeling, and simulation.   

One of the recent efforts to this end is the work by Can 
and coworkers [9]. In their approach, the fast marching [10], 
a simplified level set method, was employed to find the 
voxels lying on the molecular surfaces. Because of the 
digitization of a molecule into regular grids, this approach 
only gives an approximation of the molecular surface but, 
according to the authors [9], this method is faster and more 
reliable than the MSMS algorithm, especially when very 
large molecules are taken into consideration. In terms of 
computational costs, the fast marching method has to 
traverse all voxels inside the SAS of a molecule in a voxel-
by-voxel fashion. Because of this voxel-based 
representation, the method described in [9], as pointed out 
by the authors, does not perform significantly better than the 
simple molecule-based approach (described below). 

In the present paper, we propose a new representation for 
a sphere (or equivalently an atom). Our method is efficient 
in that each sphere is represented by a number of lists, each 
containing a sequence of segments of voxels. The union of 
spheres is then calculated based on the segments instead of 
individual voxels. This new representation approach can 
speed up the calculation of the union of spheres (or van der 
Waals surface or SAS of a molecule) for 4~5 times on 
average. The SES of a molecule will be computed upon the 
completion of SAS generation. The rest of this paper is 
organized as follows. Section II gives the details of our new 
representation and generation methods for molecular 
surfaces. Results and performance analysis will be discussed 
in Section III, followed by a brief conclusion in Section IV.     

II. METHODS 

Our approach is a grid-based method, meaning that the 
3D space containing the molecule being considered is 
partitioned into regular grids, similar to a 3D digitized image 
with each grid point known as a voxel. The digitization rate 
determines the resolution of the final surface mesh  ̶  the 

A List-Based Method for Fast Generation of Molecular Surfaces 
Zeyun Yu, Member, IEEE 

M

5909

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



  

higher the digitization rate, the denser the final mesh. With 
this method, each sphere (accordingly, each atom) can be 
represented by a number of grids (or voxels) inside the 
sphere. In other words, a voxel is “active” if the distance 
from the voxel to the center of the sphere is less than the 
radius of the sphere. The union of multiple spheres is hence 
the union of the voxels belonging to one of the spheres, as 
shown in Fig. 1. The computation of the union of spheres 
can be done simply by finding the voxels enclosed by each 
of the atoms in a molecule. This is so-called molecule-based 
approach. 

 

A. List-based Representation of Spheres 
Instead of the voxel-based method, we can also represent 

a sphere by a list of line segments, which is what we call 
list-based method, as shown in Fig. 2. In this method, each 
sphere is represented by line segments that are aligned in 
one of the three major axes (X-axis by default) and located 
on the grids of Y-Z plane. Each set of line segments are 
bounded by the corresponding sphere. If two spheres 
intersect, the individual sets of line segments are separated 
by the “bisector” between the two spheres, as shown by the 
dark lines in Fig. 2. All line segments with the same Y-Z 
coordinates are linked together forming a list. Two examples 

of such list are shown by arrows in red in Fig. 2 – the one on 

the top contains two segments and the one on the bottom 
contains three segments. This list-based approach can be 
thought of as a variant of the list processing method for 
distance transform as discussed in [11]. Using the list-based 
approach, each sphere is simplified to a list of line segments 
instead of a large number of voxels. The calculation of the 
union of multiple spheres will then reduce to the processing 
on a list of line segments. This is the key of our approach to 
speed up the computation of molecular surfaces, as 
explained in detail below. The data structure in C for each 
line segment is given as follows: 

typedef struct Segment SEG; 
struct Segment  
{ 
   int atom; 
   float start; 
   float end; 
   SEG *next; 
}; 

where the integer atom denotes the indexing number of the 
corresponding atom (or sphere). The start and end are the 
two end points for the line segment. All the segments with 
the same Y-Z coordinates are linked into a list using the 
pointer next. 
 

B. List-based Calculation of the Union of Spheres 
The union of spheres is essentially the basis of calculating 

the van der Waals surfaces and solvent-accessible surfaces 
(SES) of a molecule. In this subsection, we focus on how to 
compute the union of a set of spheres using the list-based 
representation. The steps are: 

1) Projection of Spheres onto the Y-Z plane: Since we 
align the line segments along the X-axis by default, what we 
do first is to project all spheres onto the Y-Z plane – each 
sphere will be a circle on this plane. We allocate a 2D array 
A[j: 0~J-1][k:0~K-1] to store the occupancy information for 
each pixel on the Y-Z plane, where J and K are the 
dimensions in Y and Z axis respectively. Whenever a pixel 
(i, j, k) is found inside a sphere s, we add s into the array 
A[j][k] if s is not in the array yet. After all the spheres are 
projected, each entry A[j][k] in the array stores a number of 
integers, each of which corresponds to the sphere that 
intersects with the line defined by y = j and z = k (We shall 
denote this line as j-k below). 

 2) Linking the Line Segments into a List: Once the array 
A[j][k] is generated, we process each entry independently 
(therefore, our approach can be easily implemented in 
parallel algorithms if needed). For each of the entry A[j][k], 
we do the followings:  

•  If there is no integer in an entry A[j][k], then we 
simply assign “null” to A[j][k], which means that no 
sphere intersects with the line j-k. 

•  If there is only one integer in A[j][k], meaning that 
only one sphere intersects with the line j-k, then we 
calculate the intersection points (start and end) and 

 

 
 
Fig. 2. Illustration of the list-based approach to represent and 
calculate the union of multiple spheres. Note that the segments are 
separated by the “bisector” between two intersecting spheres. Each 
sphere has its own set of line segments. All line segments with the 
same y-z coordinates will be linked into a list. 

 

 
 
Fig. 1. Illustration of the voxel-based approach to represent and 
calculate the union of multiple spheres. For simplicity, we consider 
here only circles on a 2D plane, although the concept is readily 
applicable to the 3D spheres.   

5910



  

assign the indexing number of the corresponding 
sphere to atom. 

•  If there are two or more integers in A[j][k], we need to 
consider the overlapping between neighboring spheres 
on the line j-k. As shown in Fig. 2, when two spheres 
intersect, they will have their own influence zone, 
separated by the “bisector” between them. Using the 
influence zone idea, we are able to eliminate the 
overlapping between spheres. The detailed procedure 
is as follows. We initially keep an empty list in A[j][k]. 
Then we take each sphere into consideration – the 
order of the spheres being considered does not matter. 
Whenever a new sphere comes in, we calculate the 
start and end points that form a segment. Using the 
atom information, we can compute the “bisector” and 
subsequently the influence zone between the new 
sphere and the spheres already on the list. The 
influence zones are used to update the start and end 
values and then insert the new sphere into the current 
list. 

•  Repeating the above three cases will end up with a list 
of non-overlapping line segments on the line j-k. We 
can then output the voxels covered by each line 
segment by visiting all segments on this line. Because 
we keep track of the atom for each line segment, we 
are able to attach the “ownership” (the atom) to each 
voxel found in the union of multiple spheres. This is 
extremely useful for the subsequent processes as 
discussed shortly. 
 

From the above procedures, we are able to generate an 
accurate set of voxels enclosed by the union of a number of 
spheres (atoms). Thanks to the list-based representation, 
these voxels, as well as their corresponding atoms, can be 
found in a very efficient way, as will be demonstrated in the 
Results below.                  

C. Solvent-Excluded Surface Generation 
The above list-based approach is employed to generate 

the solvent-accessible surface (SAS) of a molecule. The 
output is a number of voxels lying near the target surface. 
These voxels are denoted by integers (at grid points) but 
they can be projected onto the sphere of the associated atom 
– remember that we have the atom information for every 
voxel found. We may use the mapped positions as the 
centers to form a new set of spheres who share the same 
radius – the size of the probing sphere. This new set of 
spheres can be used to generate the solvent-excluded surface 
(SES) of the molecule. Alternatively, we can also utilize the 
fast marching method as discussed in [9] to find the SES of 
a molecule, based on the SAS results obtained in the list-
based approach described above. The latter is perhaps more 
efficient when the sampling (the dashed squares in Fig. 1 
and Fig. 2) becomes very dense and consequently the 
number of voxels found on the SAS of the molecule is very 
large, which renders the list-based method less efficient. 

Nevertheless, our list-based approach can still save a lot of 
time in generating the SAS of the molecule, upon which the 
generation of SES is based in the fast marching method [9].  

D. Post-processing: Mesh Smoothing 
Both the SAS and SES of a molecule generated by the 

above procedures are represented by voxels, which can be 
converted into a set of quadrilaterals. However, these 
quadrilaterals are always aligned in one of the XY, YZ, or 
XZ planar orientations. For better visualization, we can 
smooth the quadrilateral mesh using any mesh smoothing 
algorithms. In particular, we can project the vertices of the 
mesh obtained onto the corresponding spherical patch on the 
SAS or SES of the molecule. Again, this becomes possible 
thanks to the atom information we store on each voxel found 
in the above algorithm.  

III. RESULTS 

A. Performance Analysis 
Since the algorithm proposed in [9] is not significantly 

better than the molecule-based method in finding the SAS of 
a molecule and it is claimed to be faster than other existing 
tools for SES generation (note that finding SAS is part of 
this process), we shall focus on the speed comparison 
between the molecule-based method and the list-based 
method as proposed in the present study. Fig. 3 shows the 
performance comparison between these two methods. The 
time is evaluated on a Dell workstation with a 3.00GHz 
processor. According to the six molecules tested, the list-
based method is 4~5 times faster on average than the 
molecule-based method. In addition, the list-based method 
produces accurate “ownership” information for every voxel 
on the molecular surfaces. But the simple molecule-based 
method does not guarantee the correct “ownership” 
information unless we again use the “bisector” to test every 
voxel found. But this requires a significant amount of extra 
time.  

 
 
Fig. 3. The performance comparison between the molecule-based 
method and the list-based method. On average, the list-based method 
is 4~5 times faster than the molecule-based method. The horizontal 
axis shows the number of atoms in the six molecules tested, which are 
(from left to right): 2CMP, 1CID, 2CJW, 2CEL, 2HAO, 2VBI, all 
taken from the protein data bank (PDB).  

5911



  

B. Molecular Surface Generation 
In Fig. 4, we demonstrate the molecular surface 

generation on a small segment taken from the molecule 
2CMP. The top row shows the SAS spherical patches 
(outside and inside views) of the atoms. Each colored patch 
corresponds to the contribution from one atom. The bottom 
row shows the generated and smoothed quadrilateral mesh 
of the SES surface of the molecule, which can be easily 
converted into a triangular mesh. The mesh is smoothed by 
projecting each vertex onto the corresponding spherical 
patch on the SES surface. From the enlarged region, we can 
see that the surface mesh has a very high quality in terms of 
angle distribution (no too small or too large angles are seen).     

 
Fig. 5 shows another example on a channeling protein 

called Sulfate Activating Complex, which has 8610 atoms. 
The generated SES mesh was smoothed using the Laplacian 
smoothing technique. The total time spent on both SAS and 
SES surface generation is less than two seconds on a Dell 
workstation with a 3.00GHz processor.  

IV. CONCLUSION 
In this paper, we presented a list-based approach to 

represent and generate the union of a set of spheres that may 
have different radii. This method was applied to molecules 
to find the solvent-accessible and solvent-excluded surfaces 
of a molecule. The method we proposed is very efficient in 
terms of speed and can produce high-quality quadrilateral or 
triangular meshes. In addition, it is very reliable, with the 
ability to handle very large molecules within a few seconds. 

The tool associated with the algorithms presented will be 
made available in a public domain. We expect that the 
approaches proposed here will benefit research scientists in 
a wide spectrum of areas by providing a fast, reliable, and 
high-quality surface generation tool for molecules.       

REFERENCES 
[1] B. Z. Lu, Y. C. Zhou, G. A. Huber, S. D. Bond, M. J. Holst, and J. A. 

McCammon, “Electrodiffusion: A continuum modeling framework for 
biomolecular systems with realistic spatiotemporal resolution”. J. 
Chem. Phys., vol. 127, pp. 135102-19, 2007. 

[2] B. Lee and F.M. Richards, “The interpretation of protein structures: 
estimation of static accessibility”, J. Mol. Biol., vol. 55, no. 3, pp.   
379-400, 1971. 

[3] M.L. Connolly, “Analytical molecular surface calculation”, J. Appl. 
Cryst., vol. 16, no. 5, pp. 548-558, 1983. 

[4] J.A. Grant and B.T. Pickup, “A Gaussian description of molecular 
shape”, J. Phys. Chem., vol. 99, pp. 3503-3510, 1995. 

[5] Z. Yu, M. Holst, Y. Cheng, and J.A. McCammon, “Feature-preserving 
adaptive mesh generation for molecular shape modeling and 
simulation”, Journal of Molecular Graphics and Modeling, vol. 26, no. 
8, pp. 1370-1380, 2008. 

[6] P.W. Bates, G.W., Wei, and S. Zhao, “Minimal molecular surfaces 
and their applications”, J Comput Chem., vol. 29, no. 3, pp. 380-391, 
2008. 

[7] M.F. Sanner, A.J. Olson and J.C. Spehner, “Reduced surface: an 
efficient way to compute molecular surfaces”, Biopolymers, vol. 38, 
pp. 305-320, 1996. 

[8] K.H. Huebner, D. Dewhirst, D.E. Smith, T.G. Byrom, “The Finite 
Element Method for Engineers”, published by Wiley-IEEE, 2001. 

[9] T. Can, C.-I. Chen,  and Y.-F. Wang, “Efficient molecular surface 
generation using level-set methods”, Journal of Molecular Graphics 
and Modeling, vol. 25, no. 4, pp. 442-454, 2006. 

[10] J. A. Sethian, “Level set methods and fast marching methods: evolving 
interfaces in computational geometry, fluid mechanics, computer 
vision and materials science”, 2nd Edition, Cambridge University 
Press, 1999. 

[11] W. Guan and S. Ma, “A list-processing approach to compute Voronoi 
diagrams and the Euclidean distance transform”, IEEE Transaction on 
Pattern Analysis and Machine Intelligence, vol. 20, no. 7, pp. 757-761, 
1998.   

 
 
Fig. 5. The molecular surface generation and smoothing on the 
channeling protein called Sulfate Activating Complex that has 8610 
atoms. The surface mesh was smoothed using the Laplacian 
smoothing technique. 

 

 
 
Fig. 4. The molecular surface generation on a small segment taken 
from the molecule 2CMP. Top row shows the colored spherical 
patches on the SAS of the molecule (outside and inside views, 
respectively). Each of the patches is contributed from one atom. 
Bottom row shows the computed SES of the molecule. The surface is 
represented by a quadrilateral mesh, as can be seen more clearly in the 
enlarged region on the right. Note that a few polygon lines disappear 
due to some bugs in the rendering software tool (UCSF Chimera) we 
used.  

5912


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

