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Abstract— For most diseases and examinations, clinical data
such as age, gender and medical history guides clinical man-
agement, despite the rise of high-throughput technologies. To
fully exploit such clinical information, appropriate modeling of
relevant parameters is required. As the widely used linear ker-
nel function has several disadvantages when applied to clinical
data, we propose a new kernel function specifically developed
for this data. This “clinical kernel function” more accurately
represents similarities between patients. Evidently, three data
sets were studied and significantly better performances were
obtained with a Least Squares Support Vector Machine when
based on the clinical kernel function compared to the linear
kernel function.

I. INTRODUCTION

When patients undergo an examination, patient-specific

information such as age, menopausal status and medical

history is registered. Laboratory analyses are performed on

for example progesterone, estrogen and CA125. Finally,

both histopathological parameters such as tumor size and

lymph node status, and ultrasound data such as endometrium

thickness may be required. Whilst high-throughput technol-

ogy has considerably advanced cancer research, for many

other diseases and examinations clinical data fully guides

clinical management. Furthermore, Eden and colleagues have

shown the value of clinical markers over the use of profiles

obtained from high-throughput technologies [4]. Advanced

mathematical models such as the Support Vector Machine

(SVM) [15] can therefore aid clinical decision support by

using the available clinical information. In many previous

studies, the linear kernel function was used for this purpose

[1][8][13]. As will be shown in this manuscript, this kernel

function has several disadvantages when applied to clinical

data. Our aim is now to present an alternative kernel function

specifically developed for clinical data. We will compare

both these kernel functions on three clinical data sets, all

within the field of anticipation.

II. METHODS

A. Kernel methods and weighted Least Squares Support

Vector Machine

Kernel Methods, a powerful class of algorithms for pattern

analysis, have become a standard tool in data analysis,

computational statistics, and machine learning applications

due to their reliability, accuracy, and computational efficiency

[10]. They have the capability to handle a very wide range of

data types (e.g. sequences, vectors, networks) by working in
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a high dimensional feature space. This is obtained with the

function Φ(x) which maps the data x from the original input

space to the feature space. This embedding is performed by

the ’kernel function’ k(xk, xl), which efficiently computes

the inner product 〈Φ(xk), Φ(xl)〉 between all pairs of data

items xk and xl in the feature space. This results in the

kernel matrix with the size determined by the number of

data items. Any symmetric, positive semidefinite function is

a valid kernel function (e.g. linear, polynomial, and diffusion

kernels). They all correspond to a different transformation

of the data, meaning that they extract a specific type of

information from the data set. In this paper, the linear

kernel function k(xk, xl) = xT
k xl is compared with a newly

introduced kernel function for clinical data (see II.B). Both

functions were normalized to guarantee a similar order of

magnitude for the kernel matrices.

A kernel algorithm for supervised classification is the

Least Squares Support Vector Machine (LS-SVM), a sim-

plified version of the SVM [15] and developed by Suykens

et al. [11][12]. While in many two-class problems data sets

are skewed in favour of one class such that the contribution

of false negative and false positive errors is not balanced,

we used a weighted version of the LS-SVM (wLS-SVM)

to account for the unbalancedness in the data sets [7]. The

constrained optimization problem has the following form:

min
w,b,e

(

1

2
w

T
w + γ

1

2

N
∑

k=1

ζke
2

k

)

, s.t. yk[wT Φ(xk) + b] = 1 − ek,

(1)

with

ζk =

{

N
2NP

if yk = +1
N

2NN

if yk = −1,

NP and NN representing the number of positive and negative

samples, respectively, N the total number of samples, ek

the error variables tolerating misclassifications in case of

overlapping distributions, and γ the regularization parameter

which allows tackling the problem of overfitting.

We applied a 10-fold cross-validation (CV) approach in

which the regularization parameter γ is optimized on a

logarithmic scale over an interval from 10−4 to 106. The

optimal γ value was chosen corresponding to the model

with the highest 10-fold AUC (area under the ROC curve).

If multiple models with equal AUC, the model with the

lowest balanced error rate and an as high as possible sum

of sensitivity and specificity was chosen. The model with

the optimal γ was further validated on an independent test

set. For each considered data set, the AUC of the model

using the clinical kernel was compared with the AUC of the

5913

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



models based on the linear kernel function using the method

of Hanley and McNeil [6].

B. Kernel function for clinical data

A distinction should be made between continuous, ordinal,

and nominal variables. Whilst an ordinal variable has two

or more categories with an intrinsic ordering, a nominal

variable lacks this ordering. A linear kernel function provides

a measure of similarity between two patients by calculating

their inner product for one or several variables. The inner

product for continuous variables depends on the variable

range (e.g. age from 20 to 50 years vs. progesterone from

0 to 5 nmol/l). For ordinal variables, the comparison of two

patients with value 1 and 2 also depends on the range of this

variable. These patients will be less similar when the variable

has only three categories then when it has six categories.

Furthermore, when a possible category for an ordinal variable

equals zero, the inner product for a patient with value zero

will always be zero, independent of its dissimilarity with

another patient. Finally, for a nominal variable the inner

product between two patients should only be larger than zero

when both patients have the same category.

Therefore, the typically used inner product needs to be re-

defined. Moreover, because continuous and ordinal variables

are not comparable in range, the kernel function needs to be

applied to each variable individually. To ascertain the same

influence of each variable, the individual matrices need to

be normalized before calculating the global, heterogeneous

kernel matrix.

In the next subsections, an alternative clinical kernel

function is proposed for each variable type. The following

notations are used: k(xi, xj) denotes the kernel function for

variable x between patients i and j; Kx(i, j) ∀i, j represents

the corresponding individual kernel matrix for variable x;

K(i, j) ∀i, j represents the global, heterogeneous kernel

matrix.
1) Continuous and ordinal clinical variables: The same

kernel function is proposed for these variable types:

kx(i, j) =
(max − min) − |xi − xj |

max − min
, (2)

with max and min the maximal and minimal value for

variable x defined on the training data set.
Example 1: We would like to calculate the similarity (i.e.,

kernel matrix) between three patients h, i, and j for the

continuous variable age. Patient h is 23 years old, patient i
26, and patient j 54. Suppose that, based on the training data,

the minimal age seems to be 20 and the maximal age 100.

The elements in the kernel matrix can then be calculated as

follows:

Kage(h, i) = (80 − |23 − 26|)/80 = 77/80

Kage(h, j) = (80 − |23 − 54|)/80 = 49/80

Kage(i, j) = (80 − |26 − 54|)/80 = 52/80

The resulting kernel matrix for variable age equals

Kage =

[

1 0.9625 0.6125
0.9625 1 0.6500
0.6125 0.6500 1

]

with values decreasing with increasing dissimilarity between

patients.

Example 2: The extent of most types of cancer are

described with a TNM classification system. The T stands

for the size of the primary tumor with possible values 1, 2,

3, and 4. The N describes the degree of spread of the tumor

to regional lymph nodes. Simplified, N can be equal to 0 (no

spread of tumor cells to regional lymph nodes), 1 (spread to

the closest or a small number of lymph nodes), or 2 (spread

to more distant or a larger number of lymph nodes). Finally,

the absence or presence of metastasis is represented with the

binary variable M (see Example 3).

Suppose patient h is characterized by T1N0, patient i by

T3N2, and patient j by T4N1. The resulting kernel matrices

equal

KT =

[

1 0.33 0
0.33 1 0.66
0 0.66 1

]

, KN =

[

1 0 0.5
0 1 0.5

0.5 0.5 1

]

.

This example illustrates that the proposed kernel function

takes the range of variables into account (0.66 vs. 0.5 for a

difference in one unit). Furthermore, the kernel value equals

zero when two patients are most dissimilar (T1 vs. T4, and

N0 vs. N2). The linear kernel function on the other hand

would have led to positive values.

2) Nominal clinical variables: For nominal variables, the

kernel function between patients i and j is defined as

kx(i, j) =

{

1 if xi = xj

0 if xi 6= xj
. (3)

This kernel function is independent of the variable values,

such that binary, dummy variables are no longer needed.

Example 3: Continuing on example 2, we can now apply

the kernel function for nominal variables on the variable M.

Suppose patient h has no distant metastasis, whilst patients i
and j both metastasized to distant organs beyond the regional

lymph nodes. In that case, the kernel matrix becomes

KM =

[

1 0 0
0 1 1
0 1 1

]

3) Final kernel for clinical data: Because each individual

kernel matrix has been normalized to the interval [0,1], the

global, heterogeneous kernel matrix can be defined as the

sum of the individual kernel matrices, divided by the total

number of clinical variables. This matrix then describes the

similarity for a class of patients based on a set of variables

of different type.

Example 4: The heterogeneous kernel matrix for the

similarity between patients h, i, and j based on age, tumor

size (T), lymph node spread (N), and metastasis (M) is given

by

K =
1

4
(Kage+KT +KN+KM ) =

[

1 0.324 0.2781
0.324 1 0.7042
0.2781 0.7042 1

]
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C. Clinical data sets

We considered three clinical data sets for which a distinc-

tion was made between continuous variables (labeled as C),

ordinal variables (O), and nominal variables (N).

Endometrial disease: Data set I contains clinical infor-

mation on 402 patients with an endometrial disease who

underwent an echographic examination and color Doppler

[14]. The patients are divided into two groups according

to their histology: malignant (hyperplasia, polyp, myoma,

and carcinoma) versus benign (proliferative endometrium,

secretory endometrium, atrophia). After excluding patients

with incomplete data, the data was, stratified to outcome,

randomly divided into a training and test set. The training

set contains two-third of the masses, i.e., 226 of which 109

malignant and 117 benign; the test set contains the remaining

one-third (113 masses, 54 malignant and 59 benign). An

overview of the 24 clinical variables is given in Table I.

Miscarriages: A prospective observational study of 1828

women undergoing transvaginal sonography before 12 weeks

gestation resulted in data for 2356 pregnancies of which 1458

normal at week 12 and 898 miscarriages during the first

trimester [2]. When randomly dividing the data set stratified

to outcome, the training set contains 1571 pregnancies of

which 972 normal and 599 miscarriages, and the test set

785 pregnancies with 486 normal and 299 miscarriages. The

18 clinical variables are shown in Table II.

Pregnancies of Unknown Location: Data set III contains

data on 1003 pregnancies of unknown location (PUL) [5].

Within the PUL group, there are four clinical outcomes:

a failing PUL, an intrauterine pregnancy (IUP), an ectopic

pregnancy (EP) or a persisting PUL. Because persisting

PULs are rare (18 cases in the data set), they were excluded,

as well as pregnancies with missing data. The final data set

consists of 856 PULs among which 460 failing PULs, 330

IUPs, and 66 EPs. As the most important diagnostic problem

is the correct classification of the EPs [3], we divided the data

into a training set containing 571 pregnancies (527 non-EP,

44 EP) and a test set with 285 pregnancies (263 non-EP, 22

EP). The 15 clinical variables are shown in Table III.

The ranges of the variables shown in Tables I to III were

determined based on the training data.

III. RESULTS

A. Comparison of the linear and clinical kernel function

In a first phase, we verified whether the clinical kernel

function better represents the true similarity between the

samples. For this purpose, a publicly available data set on

breast cancer was used in which the appearance of distant

subclinical metastases was predicted based on the primary

tumour [16]. This data set of 148 patients contains 13 clinical

parameters: 2 continuous parameters, i.e., age (20-60 years)

and tumour diameter (0-70 mm); 4 ordinal parameters, one

ranging from 0 to 15, the others from 1 to 3; and 7 nominal,

binary parameters.

Fig. 1 shows the histograms of the kernel matrices based

on the linear and clinical kernel function, with the con-

tinuous variables being standardized for the linear kernel.

TABLE I

CLINICAL VARIABLES DATA SET I

variable type range

1. age (years) C 22 - 85
2. weight (kg) C 45 - 160
3. number of miscarriages/abortions O 0 - 5
4. parity O 0 - 6
5. gravidity O 0 - 7
6. menopausal status N 1,2,3
7. hormonal therapy N 0 - 4
8. intrauterine device N 0,1,2
9. type of AUBρ N 1,2,3
10. amount of AUBρ N 1,2,3
11. duration of AUBρ (months) C 0.5 - 96
12. endometrial cells N 1,2,3

13. endometrium thickness on USψ (mm) C 0 - 39.4
14. intracavity fluid (mm) C 0 - 8.7
15. 3-layer pattern N 1,2
16. intracavity lesion N 1,2,3
17. subendometrial cyst N 1,2
18. endometrial cyst N 1,2
19. number of calcifications O 0 - 8
20. number of myoma O 0 - 4
21. ovary aspect N 1,2
22. number of follicles N 0,1
23. pedicle sign N 1,2,3
24. endometrium thickness on CDε (mm) C 0 - 47.8

ρ AUB, abnormal uterine bleeding
ψ US, ultrasound
ε CD, color Doppler

TABLE II

CLINICAL VARIABLES DATA SET II

variable type range

1. age (years) C 15 - 48
2. PBAC bleeding score O 0 - 4
3. follow-up consent N 0,1,2
4. ethnicity N 0 - 6
5. regular dates N 0,1,2
6. gravida O 1 - 12
7. number of deliveries after 24 weeks O 0 - 10
8. number of terminated pregnancies O 0 - 4
9. number of early miscarriages O 0 - 10
10. number of PULsρ O 0 - 1
11. number of late miscarriages O 0 - 5
12. number of ectopic pregnancies O 0 - 1
13. previous chromosomal abnormalities N 0,1

14. bleedingψ N 0,1

15. painψ N 0,1

16. previous ectopic pregnancyψ N 0,1

17. previous miscarriageψ N 0,1

18. anxietyψ N 0,1
ρ PUL, pregnancy of unknown location
ψ indication for scan

The histogram for the linear kernel function has a slightly

larger mean equal to 0.7410 (median 0.7766) compared to

a mean of 0.7122 (median 0.7168) for the clinical kernel

function. Four comparisons on the patients shown in Table

IV were made to verify whether differences in the kernel

values correspond to true differences in patient data.

Comparison a) Minimal clinical kernel value: Patients

55 and 84 are most dissimilar according to the clinical

kernel function with a kernel value of 0.1523 contrary to

0.1415 for the linear kernel function (see Table IV for the

clinical parameters). These two patients differ greatly in

tumour size (C2), are most different for three of the four
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TABLE III

CLINICAL VARIABLES DATA SET III

variable type range

1. hCGρ at 0h (U/l) C 1.79 - 9.15ψ

2. progesterone at 0h (nmol/l) C 0 - 5.25ψ

3. hCGρ at 48h (U/l) C 0 - 9.52ψ

4. progesterone at 48h (nmol/l) C 0 - 5.25ψ

5. hCGρ ratio (48h/0h) C 0.085 - 4.77
6. endometrium thickness (mm) C 1.5 - 34.9
7. character of midline echo N 0,1
8. free fluid in pouch of Douglas N 0,1
9. gestational age (days) C 10 - 100
10. lower abdominal pain N 0,1
11. vaginal bleeding N 0,1,2
12. previous miscarriage N 0,1
13. previous ectopic pregnancy N 0,1
14. anxiety N 0,1
15. age (years) C 14 - 49

ρ hCG, human chorionic gonadotropin
ψ on a logarithmic scale after correction for a positively skewed distribution
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(b) Clinical kernel

Fig. 1. Histograms of the kernel matrices: (a) based on the linear kernel
function after standardization of the continuous variables, (b) based on the
clinical kernel function.

ordinal variables (O2 to O4), and have different values for

all nominal variables.

Comparison b) Minimal linear kernel value: The lowest

value for the linear kernel function on the other hand occurs

between patients 36 and 55 and is equal to 0.0089, in contrast

to the clinical kernel value of 0.3904. When comparing the

data of these two patients, age and tumour size seem to be

more different than was the case in comparison a. These

patients, however, are equal for two ordinal and two nominal

variables. The clinical kernel function ranks these patients as

more similar due to the equal weights given to each variable.

In the linear kernel, however, the influence of the continuous

variables age and tumour size dominates the influence of the

non-continuous variables.

Comparison c) Influence of ordinal and nominal variables:

For validating the influence of the non-continuous variables

on the kernel matrix, we chose three patients with the same

age and tumour size (see Table IV). Patients 1 and 18 are

different according to two nominal variables, whilst patients

1 and 45 slightly differ in two ordinal variables (0 vs. 1

for O1 on a range from 0 to 15, and 1 vs. 2 for O2 on a

range from 1 to 3). Taking into account the range of the

variables, patients 1 and 45 are more similar than patients

1 and 18. This difference in similarity is much clearer with

the clinical kernel function (0.9564 and 0.8462, respectively)

compared to the linear kernel function (0.9465 and 0.9313,

TABLE IV

SPECIFIC PATIENT DATA FROM [16]

a b c d

Patient 55 84 36 55 1 18 45 6 58 3 79

C1 50 41 37 50 41 41 41 40 39 48 49
C2 8 45 50 8 20 20 20 14 15 15 16

O1 0 4 0 0 0 0 1 0 0 0 0
O2 1 3 1 1 1 1 2 1 1 1 1
O3 3 1 1 3 1 1 1 1 1 1 1
O4 1 3 3 1 3 3 3 3 3 3 3

N1 0 1 1 0 0 1 0 0 0 0 0
N2 1 0 0 1 1 0 1 1 1 1 1
N3 0 1 0 0 0 0 0 0 0 0 0
N4 0 1 0 0 0 0 0 0 0 0 0
N5 0 1 1 0 1 1 1 1 1 1 1
N6 0 1 1 0 1 1 1 1 1 1 1
N7 0 1 1 0 0 0 0 0 0 0 0

respectively).

Comparison d) Influence of continuous variables: Finally,

we compared four patients with the same ordinal and nominal

variables but some minor differences in age and tumour size.

Patients 6 and 58 differ 1 year in age with a difference of 1

mm in tumour size. The same differences hold for patients

3 and 79, but they are both older with a slightly larger

tumour. The similarities k(6, 58) and k(3, 79) are both equal

to 0.9970 for the clinical kernel function. These similarities,

however, are slightly different according to the linear kernel

function (0.9983 and 0.9984).

B. Results on real data

Subsequently, we compared the linear and clinical kernel

function on three data sets when used in a supervised

classification algorithm. A 10-fold cross-validation (CV)

approach was applied to train a wLS-SVM model, which was

subsequently validated on a test set. These results are shown

in Table V, the ROC curves of the models when applied on

the test sets in Fig. 2. Significant differences between models

based on the clinical kernel function and the corresponding

models based on the linear kernel function (with and without

standardization of the continuous variables) are indicated

in bold at a significance level of 0.05. The wLS-SVM

based on the clinical kernel function outperformed the wLS-

SVMs based on the linear kernel function, although not

significant in all cases. For data set II, there was a significant

improvement for the training set, whilst significantly better

results were obtained on the test set from data set III.

IV. CONCLUSIONS

When modeling clinical data, good results can be obtained

with the linear kernel function when the variables with the

largest range correlate better with the predicted outcome,

as larger weights are assigned to such variables. However,

when the reverse is true, this linear kernel function is not

optimal. Because the correlation is often unknown before-

hand, because nominal variables with numerous categories

can distort the calculation of patient similarity, and moreover,

to eliminate dependency on variable ranges, each variable

must have the same influence on the calculation of patient
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TABLE V

RESULTS ON REAL DATA

Data Kernel 10-fold test
set function AUC p-valueµ AUC p-valueµ

I
linear 0.7431 0.4768 0.7216 0.0455

linear std 0.7425 0.4470 0.7423 0.0523
clinical 0.7608 0.8107

II
linear 0.7392 6.36e-4 0.7718 0.3588

linear std 0.7464 0.0059 0.7729 0.3624
clinical 0.7702 0.7840

III
linear 0.8034 0.0438 0.8177 5.51e-5

linear std 0.8130 0.0747 0.8225 6.61e-5
clinical 0.8602 0.9231

µ comparison with the AUC of the clinical kernel function[6]
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(a) Data set I
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(b) Data set II
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(c) Data set III

Fig. 2. ROC curves of the wLS-SVM models applied on the test sets
(linear kernel, blue solid line; linear std kernel, black dotted line; clinical
kernel, red dashed line).

similarities, which is not the case. We therefore propose the

clinical kernel function which takes into account the type and

range of each variable. This requires the specification of each

type of variable, as well as the minimal and maximal possible

value for continuous and ordinal variables based on the

training data or on a priori knowledge. Notably, the test data

may contain more extreme values for certain variables. This

is, however, irrelevant as the kernel matrix remains positive

semi-definite with only negative values besides the diagonal,

expressing more dissimilarity with the training cases.

From our results, we can conclude that the clinical kernel

function more accurately represents similarities between pa-

tients. Moreover, the wLSSVM based on the clinical kernel

function significantly outperformed the linear kernel function

when tested on three data sets.
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