
  

  

Abstract—Humans are remarkable in their ability to adapt 
to changes in the dynamics of a movement. The mechanisms by 
which the brain controls body movements are important in the 
fields of robotics and neurosciences. Robots are largely used to 
study the adaptive properties of human motor system. If 
rehabilitation robots are used in conjunction with techniques 
for functional brain imaging, in principle the motor learning 
can be facilitated for rehabilitation purposes. In this study, we 
use motor imagery technique to improve the learning rate in a 
robot-based adaptation task. We tried to determine whether 
humans can learn an internal model of a complex mixed force 
field (V+P) that was the sum of a velocity-dependent force field 
(V) and a position-dependent force field (P). The results suggest 
that the motor learning can be influenced by mental practice 
and could be used to increase the rate of adaptation. 

I. INTRODUCTION 
Humans have exceptional abilities to behave adaptively even 
in diverse and complex environment in various types of 
behaviors. The manipulating adaptive properties of the 
motor system have been studied in experiments in which 
robots deliver forces that may be made dependent on 
position, speed and/or acceleration, thus allowing to 
simulate specific dynamic environments (‘force fields’). In 
simple force fields, the central nervous system (CNS) can 
acquire a neural representation (internal model, IM) of the 
relation between motor commands and external dynamics. 
For example, when subjects are exposed to a velocity 
dependent force field that systematically disturbs arm 
motion, they are capable of gradually recovering their 
original movements, by cancelling the disturbance by means 
of pre-planned patterns of forces. This control modality is 
revealed by characteristic after-effects, the subjects make 
these errors when the perturbing forces are unexpectedly 
removed, suggest that internal models are built with practice 
[1]. An alternate strategy for compensation is used in some 
cases where external dynamics are not stable. For example, 
in movements made under divergent perturbing forces the 
subjects do not learn the IM, but compensate for the force by 
increasing the mechanical impedance of the arm. This 
strategy is called impedance control, and it does not need to 
acquire models of the physical environment [2]. Recent 
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studies have shown that the CNS prefers using IMs when 
the external dynamics is stable. In contrast, it prefers 
impedance control when the dynamics is unstable [3]. 
In relation to the movement, motor imagery (MI) is an 
internal reproduction of a specific motor action without any 
overt motor output and represents conscious access to the 
content of the intention of a movement. However, mere 
perception of the movement is not enough for learning [4]. 
A substantial number of studies suggest that MI and 
movement execution share common neural mechanisms [5] 
and MI may affect motor performance [6]. 
These studies suggest that if motor imagery and movement 
execution share common neural mechanisms, then mental 
rehearsal of movement should have an impact on motor 
learning. In this study we investigate the effect of motor 
imagery on learning complex dynamics. We used a mix 
force field which is the sum of a velocity-dependent force 
field (V) and a position-dependent force field (P). In such 
complex field, the movements were corrected by both 
internal model control and impedance control strategies. 

II.  MATERIALS AND METHODS 

A. Experimental setup 
The experimental apparatus is shown in Fig.1. The robotic 
manipulandum (x and y axes) was actuated by a couple of 
linear direct drive motors (M-E099EM0T2-003, NSK Ltd, 
Japan), which were controlled by the digital servo at 2 kHz 
sampling rate. The axes positions of the robotic arm were 
detected by digital encoders at a sampling rate of 2 kHz. The 
subject was seated on an adjustable-height chair in front of 
the manipulandum, the shoulder was fixed on the back of 
the chair by a strap. The right hand and elbow were locked 
in place with a support rack at the same height as the 
shoulder, and the wrist was held in a stiff brace made of 
thermoplastic. Thus, the subject’s right arm could only move 
in the horizontal plane. The hand, start and target positions 
were indicated on the screen before the movements. 

B. Experimental protocol 
Ten subjects made point-to-point movements (12.5 cm 
amplitude) towards the target represented by a circle (1.5 
cm) on the computer monitor. Subjects made movements in 
eight directions (0, 45, 90, 135°, 180, 225, 270, and 315°); 
all the movements were started from origin and were made 
in outward directions. The subjects were encouraged to 
complete the movements in 300±50 ms. The visual feedback 
of the hand position was suppressed, but the entire hand path 
and the duration of the movement was shown after the 
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movements had finished. The subjects were allowed to take 
rest during the experiment. The movements were distributed 
into trials and sets, each trial consisted of 8 movements (1 
movement per direction), and 4 trials (4 movements per 
direction) were grouped to form one set. 
Adaptation task: In the experiment, the subjects had to made 
point-to-point movements in a mixed force field (V+P), i.e. 
sum of a velocity-dependent force field and a position 
dependent force field. The applied forces were proportional 
to both the hand velocity and the hand position according to 
the following equation. 

                                (1) 
where x = [x, y]T is the hand position. In these two 
equations, the coefficient matrix B equals [0 -25;25 0] 
(Ns/m), and K equals [0 110;-110 0] (N/m). (Fig.1) shows 
force patterns of two force fields. At first, V+P generates a 
force to the left depending on the hand velocity (the peak 
level: Fx ≈-13.75 N), and then the direction of the force is 
reversed to the right depending on the hand position (the 
peak level: Fx ≈13.75 N). These force pattern characteristics 
are the same when reaching in the other movement 
directions. 
The subjects were assigned two groups randomly; one group 
(N=5) performed reaching movements without motor 
imagery (No-MI) while the other group (N=5) performed 
reaching movements with motor imagery (MI).At first, all 
subjects in both groups practiced point-to-point reaching 
arm movements during which no force field was applied 
(200 movements). This condition is called the “null field”. 

After the practice, both groups learned the V+P (200 trials) 
force field. During later 64 movements, for eight movements 
(one movement in each direction) the force field was 
unexpectedly switched off to check for after effects. 
For each movement, subjects had to hold the cursor at the 
starting position (initial position of the target), at the center 
of the workspace. Then the target shifted to one of the eight 
outer locations. At this point, the ‘MI’ group subjects were 
required to ‘imagine’ the subsequent hand movement toward 
the target for 3 sec. A ‘Go’ signal (target color turning into 
green), indicating that the actual movement could start. On 
occurrence of the ‘go’ signal, subjects had to move 
immediately as fast and accurate as possible. During 
imagery interval, the subjects in the ‘No-MI’ group simply 
had to wait for the appearance of the ‘Go’ signal Fig.2. 

C. EMG 
We also recorded surface EMG activity of two biarticular 
muscles: the triceps long head and the biceps long head. The 
EMG recorded on the skin surface was A/D converted with 
a sampling frequency of 2 kHz. 
EMG analysis: The amplified signal was band pass filtered 
(17–530 Hz) and processed through a 50 Hz notch filters. 
To facilitate averaging across movements, data were aligned 
on the basis of the movement onset, which was defined as 
when the tangential speed first crossed a threshold (0.03 
m/sec). The absolute EMG activity during 50 ms before 
movement onset to 100 ms after movement onset was 
calculated. 
Polar analysis: We used polar analysis to evaluate changes 
in EMG. These polar plots summarized the function 
mapping of target direction into initial EMG activity. The 
analysis was done by computing the movement initiating 
activation for each direction in each trial. The resultant 8x1 
scalar matrix for a trial was multiplied by respective unit 
vectors pointing in the direction of movement. For each trial 
we added these vectors to form one resultant vector. This 
resultant vector pointed towards the mean of all eight 
directions. The orientation of this resultant vector indicates 
the preferred direction of the muscle in the dynamic 
environment. The details of EMG analysis are explained in 
[7]. 

D.  Hand-path errors 
The adaptation to the force fields was quantified by 
calculating the error relative to a straight line joining the 

 
 

        
 
Fig. 1. Experimental setup: A robotic Manipulandum was 
used to deliver the forces during the movements in eight 
directions. The forces was generated first towards left 
(perpendicular to the target direction) and then towards right. 
 

 
Fig.2. After onset of the target, during first 3 seconds the 
subject has to stay still and imagine the subsequent movement 
or wait for the ‘Go’ signal. The “Go” signal indicates the start 
of the movement. 
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centers of the start and the target circles. The absolute hand 
path error T.E was calculated as follow 

                              (2) 

Here, T.E represents the area between the actual movement 
path and the straight line and ‘a’ is the deviation of the hand 
position to the direction perpendicular to the target direction 
and  is the hand velocity to the target direction. The errors 
were calculated from the start time, ts (20 ms before 
crossing a hand velocity threshold of 0.05 m/s), to the 
termination time, tf (20 ms after recrossing a hand velocity 
threshold of 0.05 m/s). The error measures were adjusted for 
any bias that may have been present during the last null field 
set. Therefore, errors in a field set always refer to changes 
from errors in the null set. We also compared the errors of 
the after effects for the subjects of both groups and in-
between the groups. 

III. RESULTS 
Fig.3 shows the learning curves of both groups in force field 
trials. The horizontal axis represents the trial number, and 
the vertical axis represents the error in each group. The error 
bars represent standard deviation. In both groups, the 
average error substantially decreased across trials. There 
was a significant difference between the average error of the 
last set (last 32 movements) and that of the first set (first 32 
movements) in both groups (MI: p<0.03; NO-MI: p<0.01), 
suggesting that the subjects learned to move in the force 
fields. We recorded the after effects to determine how the 
compensation for the force was achieved. We compared the 
errors of the after effect trials with the errors of last set in 
the force field in both groups. The data shown in the figure 
are the average of each group. The error bars represent 
standard deviation. We found no significant after effects 
within NO-MI group; however, strong after effects were 
present within MI group (p<0.04). In general the after 
effects in MI group was greater than NO-MI group 
(p<0.01). Fig. 4 shows activation of each muscle in a certain 
“preferred” direction. For the null field (gray line), the 
resultant vector (mean±SD) in the biceps (MI, -29°±7°; 
NOMI,- 35°±8°) and in the triceps (MI, 138°±6°; NO-MI, 
148°±7°) was measured, presuming a sinusoidal fit of the 
data. The muscle preferred direction was changed with 
adaptation in both biceps (MI,-72°±8°; NO-MI,-28°±6°) and 
triceps (MI, 113°±7°; NO-MI, 130°±7°). After adaptation, 
the resultant vectors (black line) rotate in a clockwise 
direction for all subjects in the MI group in both muscles. 
However, in the NO-MI group the biceps muscle showed no 
rotation in two subjects and counter clockwise rotation in 3 
subjects; the triceps muscle showed clockwise rotation 
similar to MI group but the results were not significant 
(p=0.187). 

IV. DISCUSSIONS 
In reaching movements, the CNS combines two elements of 
control: feedforward elements generate neural commands 
based on information available before the movement (e.g., 

desired trajectory); and feedback elements, which generate 
neural commands based on delayed visual and 
proprioceptive information available during the movement. 
During this experiment the visual information was 
suppressed, so the movements were mainly under the 
influence of feedforward elements. The subjects in both 
groups showed discrepancy between expected and actual 
movement as indicated by high errors during the early phase 
of learning, and with training they learn to make correct 
movements under force field. The magnitude of the 
observed error was decreased gradually with the practice 
period in both groups. To quantify whether subjects develop 
an IM, we removed the force field in few movements 
unexpectedly, the subjects in both groups produced 
trajectories opposite to the direction of removed force field. 
However the after effect errors were larger in MI group. We 
also performed EMG analysis to spot any effect of learning 
on muscle preferred direction. Previous studies developed 
the hypothesis that practicing in a field at a given arm 
configuration results in a change in the pattern of muscle 
activations (or forces) as a function of movement direction 
(or desired motor state). The change may be quantified as a 
rotation in the spatial tuning curves, or preferred directions, 

(a) 

(b) 

 
Fig. 3. (a) The learning curves for both groups. (b) comparison of 
the after effects within groups and in-between both groups. The 
subjects with motor imagery showed higher after effects. 
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of EMGs [7]. We evaluated the directional bias of EMG by 
calculating the orientation of the resultant vectors (preferred 
directions) in both groups from 50 ms before the onset of 
movement to 100 ms after the movement offset. The muscle 
activity during this time will include both the feedforward 
command and the reflex responses. The resultant vectors 
remained stable in later stage of null field for both groups. 
However, with training in the force field, the preferred 
direction of each muscle’s EMG function rotates in MI 
group, while no significant rotation was found in NO-MI 
group especially in the biceps muscle. The possible 
explanation is; some force fields are easier to learn than 
others. Because learning of each field is coupled to a 
specific rotation in the muscle tuning functions, it is possible 
that the degree of difficulty in learning a mix force field 
relates to how much each tuning function needs to rotate. 
And an incomplete learning leads to partial rotation in the 
preferred direction of the muscles. Higher after effects and 
the rotation in muscle’s preferred direction in MI group 
provides evidence that during force field trials the central 
nervous system gradually composed an internal model of the 
force field, and used it to predict and compensate for the 
forces imposed by the environment, while the NO-MI group 
partially developed the internal model and might used some 
altered technique (impedance control) as well to correct the 
movements. 
Motor imagery shares the same neural mechanisms with 
motor preparation and actual movement, and the central 
changes produced during motor imagery should also have an 
effect on motor performance. In general, the process of 
learning novel motor skills is believed to involve three 

stages: (i) a cognitive stage- we observe the motor skill 
which has to be acquired; (ii) an associative stage (early 
learning) - we learn to perform and refine the motor skill. 
Movements are predominantly performed under feedback 
control mode; (iii) an autonomous stage (late learning), 
during which the motor skill increasingly becomes 
automatic and movements are predominantly performed in 
feed forward control mode. So having in mind that the 
motor imagery and actual movement shares same neural 
substrate, it is reasonable to ask whether mental rehearsals 
of a movement in a given workspace influence the 
performance. In motor imagery of an action, we use forward 
model to make movement predictions since an efferent copy 
of previous motor commands are available for it. The 
correspondence between these predictions and the behavior 
helps us to tune our forward model during the movements. 
In other words the mental practice of a movement can 
facilitate motor learning by establishing a functional link 
between internal model and forward model [8]. 

V. CONCLUSION 
In this paper, we examined adaptation of reaching 
movements to a mixed force field. Both groups managed to 
perform straight movements with trials, but the after effects 
were only present in MI group. The NO-MI subjects did not 
learn the internal model of V+P accurately and they might 
use impedance control technique to achieve the stability. 
The increase of learning in subjects who performed 
movements with motor imagery suggests that motor imagery 
together with rehabilitation robots may find immediate 
application in fields like neuromotor rehabilitation and 
motor skill learning. 
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Fig. 4. The polar plots for four conditions are shown in the
figure, the resultant gray (black) vectors show the preferred
direction of a muscle in null filed (force filed). The data was 
averaged along all subjects in each group, the error bars shows 
standard deviation of the averaged data in each direction. 
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