
  

  

Abstract— A growing number of brain monitoring tools for 
medical and biomedical applications such as surgery have been 
developed. Although many assistive technologies (e.g., brain 
computer interface (BCI) systems) aiming to restore cognitive-
motor deficits are under development, no functional neural 
indicator or brain biomarker able to track the cortical 
dynamics of the brain when interacting with new tools and/or 
novel environments in ecological situations are available. 
Therefore this study aimed to investigate potential biomarkers 
reflecting the dynamic cognitive-motor states of subjects who 
had to learn a new tool. These biomarkers were derived from 
phase synchronization measures of electroencephalographic 
(EEG) signals (coherence, phase locking value (PLV)). The 
findings indicate a linear decrease of phase synchronization for 
both movement planning and execution as subjects adapt 
during tool learning. These changes were correlated with 
enhanced kinematics as the task progressed. These non-
invasive biomarkers may play a role in bioengineering 
applications and particularly in BCI systems, allowing the 
establishment of co-adaptation/cooperation between the user’s 
brain and the decoding algorithm to design adaptive 
neuroprostheses. 

I. INTRODUCTION 

In many medical and biomedical fields, brain monitoring 
tools are being developed to identify specific neurological 
events and predict outcomes. Although many assistive 
technologies aiming to restore cognitive-motor function 
(e.g., smart neuroprosthetics for disabled populations) are 
currently underway, few monitoring tools related to 
sensorimotor integration have been developed. Specifically, 
such monitoring tools need to uncover new functional neural 
indicators, or brain biomarkers, that are able to track brain 
dynamics in ecological situations where humans have to 
learn to interact with new tools and/or changing 
environments. Ideally, they should be non-invasive, simple 
to record and analyze, simultaneously robust and sensitive to 
changes in brain function in natural situations. However, 
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until now, most investigations aiming to identify brain 
biomarkers have mainly focused on structural features 
related to brain disorders (e.g., genetic aspects) [1]. 
Although helpful, these approaches are not suitable to 
provide direct indicators to assess the functional status of the 
brain [1]. Such assessment requires recording the dynamic 
brain activity with a high (e.g. millisecond) temporal 
resolution as is done with EEG. Except for some studies 
[2,3] that suggested that the spectral power computed from 
the low theta and the alpha bands could be used as a good 
neural indicator of the adaptation of a new tool, no 
functional biomarker of cognitive states during sensorimotor 
learning is currently available. Moreover, these biomarkers 
[3] do not account for potential functional importance of 
cooperative brain processes that may be essential to cortical 
dynamic organization during sensorimotor learning [4,5]. 
Therefore, we aimed to investigate the existence of brain 
biomarkers derived from EEG phase synchronization during 
sensorimotor adaptation to a new tool.  

II. METHODS 

A. Participants and Apparatus 
Ten right-handed healthy adults participated in the study 

after giving informed consent. All had normal or corrected-
to-normal vision. Subjects sat at a table facing a computer 
screen and, with their right hand, had to perform “center-
out” drawing movements on a digitizing tablet linking a 
central target to one of four peripheral targets. Movement 
paths were displayed on the screen but the vision of the limb 
was occluded by a horizontal board. EEG signals were 
acquired using an EEG cap with 64 tin electrodes which was 
fitted to the participants’ heads in accordance with the 
standards of the extended International 10-20 system.  
 

B. Experimental Procedure 
First, the subjects performed 20 practice trials at the 

beginning of the experiment in order to be familiarized with 
the experimental setup. After this familiarization period, the 
experiment was divided into three sessions: i) pre-exposure, 
ii) exposure and iii) post-exposure. During the pre- and post-
exposure phases, the subjects performed, under normal 
visual conditions, 20 trials (i.e. 1 block). During the 
exposure phase (180 trials, i.e. 20 trials x 9 blocks), the 
subjects had to adapt to a 60º counter clockwise screen 
cursor rotation. Movements were self-initiated and targets 
were self-selected one at a time. All the targets were 
displayed throughout each trial. Subjects were asked to draw 
a line as straight and as fast as possible to reach the 
peripheral target from the home target. They were also asked 

Brain Biomarkers of Motor Adaptation Using Phase 
Synchronization  

Rodolphe J. Gentili, Trent J. Bradberry, Bradley D. Hatfield and José L. Contreras-Vidal 

5930

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE



  

to avoid following any regular sequence in selecting targets. 
Unknown to the participants, a trial was aborted and 
restarted if the time between entering the home target and 
movement onset was less than 2s. Therefore, participants 
had enough time to both select the target and plan their 
movement thus providing an extended time-window to 
analyze cortical activations related to planning and 
preparation processes of the motion. 

 

C. Movement Kinematics Analysis 
The 2D position of the pen was low-pass filtered using a 

5-Hz, eighth-order Butterworth filter. In order to quantify 
motor performance during both movement planning and 
movement execution periods, Movement Time (MT) and 
Movement Length (ML) were computed. MT was defined as 
the elapsed time between leaving the home circle and 
entering the target. ML was defined as the distance produced 
for each trial. For the nine learning blocks, the mean and 
standard deviation of the ML and MT were computed. In 
order to take into account any differences in subjects’ 
performance during the pre-exposure phase (i.e., baseline 
condition) and to focus on changes due solely to adaptation, 
the MT and ML values were standardized with respect to the 
pre-exposure stage according to the following equation: 

SPi = 
Exp

Expi

SDP
PP

Pr_

Pr_−
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where Pi  (P: Parameter) is the value of the kinematic 
parameter (i.e., MT or ML) computed for the ith single trial 
performed during exposure, and ExpPPr_  and SDPPr_Exp 
represent respectively the mean and standard deviation 
across trials of the same parameter computed during the pre-
exposure block. The SPi (SP: Standardized Parameter) 
values were then averaged across blocks and subjects. These 
average MT and ML standardized values were statistically 
tested using a Wilcoxon signed rank test to assess any 
changes between the early and late adaptation phases.  
 

D. EEG Pre-processing 
Continuous EEG data were epoched in 2-s windows 

centered at movement onset. The time-windows before (i.e., 
planning) and after movement onset were considered. 
Single-trial data were detrended to remove DC amplifier 
drift, low-pass filtered to suppress line noise, and baseline-
corrected by averaging the mean potential from -1 to 1 s. 
 

E. Phase Synchronization Computation  
Generally, the literature focusing on EEG signal analysis 

compute the synchronization between two time signals 
)(txi  and )(tx j  using classical coherence )( fCij  

according to the following equation: 
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Where )( fSij  is the cross-spectrum of the two time signals 

)(txi  and )(tx j  recorded from two electrodes i and j. 
Although this measure is classically used in the EEG 
literature it has been shown that this approach does not 
separate the effects of amplitude and phase in the 
relationship between two signals [6]. Therefore, although we 
used this method, we also computed another measure for 
assessing the synchrony between two signals named the 
Phase Locking Value (PLV) [6]. It is defined by only 
considering the phases of the two signals. 

PLV 
ϕ∆= je      (3) 

where ϕ∆  denotes the phase difference between the two 

signals (i.e., ϕ∆  = ji ϕϕ − ). The symbol represents the 
averaging operator (for more details see [6]). Although a 
complex Gabor wavelet can be used, we computed the phase 
value using the Hilbert transform defined by equation (4). It 
must be noted that these two methods provide very similar 
results when applied to EEG data [7].  
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In this definition )(~ txi  is the Hilbert transform of the time 

series )(txi  (in our case an EEG signal), and PV denotes 
the Cauchy principal value. The instantaneous phase is then 
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Beforehand, for each subject and each single-trial, a filter 
bank using a series of band-pass FIR (Finite Impulse 
Response of length 450 ms) filters was used to extract, from 
the EEG signal, seven frequency bands corresponding to the 
low (Lα: [8-10] Hz; Lβ: [13-20] Hz; Lθ: [4-5] Hz) and the 
high (Hα: [11-13]; Hβ: [21-35]; Hθ: [6-7] Hz) components 
of the alpha (α), beta (β), and theta (θ) bands. The gamma 
frequency (γ; [36-44] Hz) was also extracted. For each band 
and each time-window, both the classical spectral coherence 
and the PLV were computed for electrodes F3, F4, T7, C3, 
C4, T8, P3, P4, O1 and O2 with respect to Fz for each trial 
(it must be noted that this montage could also be used with 
an EEG cap having a reduced number of sensors). For the 
same reasons as those previously mentioned, the computed 
phase synchronization values were also standardized using 
equation (1). The only difference is that Pi represents the 
electrophysiological parameter, i.e., here a given EEG phase 
synchronization value between two given electrodes, and SPi 
represents its standardized value. The SPi values were then 
averaged across blocks and subjects.  
 

F. Curve Fitting  
For each sensor and each block, the average phase 

synchronization changes (across subjects) were fitted with a 
linear model from which the coefficient of determination 
(R2) and its slope were obtained. The pair of electrodes that 
showed a fit indicating a coefficient of determination 
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capable of explaining at least 50% of the variability of the 
data (i.e., R2≥0.50) was selected, and the slopes of these 
linear models were statistically tested. To further evaluate 
any correlation between kinematics and EEG data, MT and 
ML versus phase synchronization were plotted for each 
selected pair. An examination of the data led us to consider a 
linear and a logarithmic model to fit these relationships. The 
best fit was selected by considering the coefficient of 
determination, the Root mean square error of the Fit 
(RmseF), and the sum of squares due to the fitting error.  

III. RESULTS 
The results revealed a linear decrease of the PLV during 

movement planning and execution for the electrode pair Fz-
F3, Fz-F4, Fz-T7, Fz-C3, Fz-P3, Fz-P4, and Fz-O1. These 
changes were also correlated with improved kinematics 
throughout adaptation. Since classical coherence and PLV 
gave similar results and considering the advantages of the 
PLV, we will only present the results related to the latter. 
 

A. Kinematics Results  
As expected, the sudden introduction of the rotational 

perturbation caused distorted movement trajectories and 
slow progression towards the targets during the early 
exposure phase whereas as the subject adapted, these 
trajectories became straighter and smoother revealing that 
the subjects were learning the internal model of the novel 
visuomotor perturbation (i.e., the new tool) [3]. Such 
behavioral improvement was reflected by the significant 
decrease (Wilcoxon test, p<0.0013) of MT and ML from the 
early to the late exposure period (Fig. 1A,B). 
 

B. Electrophysiological Results 
More interestingly, while kinematics improved during 

adaptation; electrophysiological changes in phase 
synchronization were simultaneously observed (Fig. 1C). 
Namely, as the subjects adapt, the electrodes pair Fz-F3 
(Lα), Fz-F3 (Lβ), Fz-F4 (Lβ), Fz-C3 (Lβ) and Fz-O1 (γ) 
revealed a decrease captured by a linear model (i.e. R2≥0.50) 
for both movement planning and execution (Fig. 2). For 
planning, the slopes of these linear models were significantly 
different from zero (t-test, p<0.05) for Fz-F3 (Lα;Lβ), Fz-C3 
(Lβ), Fz-O1 (γ) and during execution for Fz-F3 (Lα) and Fz- 

  
Fig.1. Changes in kinematics and PLV throughout adaptation. (A) Changes 
in MT and ML. (B) Changes in path throughout learning. (C) Pair of 
electrodes showing a decrease in synchronization throughout adaptation 
during planning (top scalp plot) and execution (bottom scalp plot). 

C3 (Lβ) while a trend was observed for Fz-F3 (Lβ, p=0.06) 
and Fz-F4 (Lβ, p=0.07). Also, for execution, the same 
analysis revealed that the electrode pairs Fz-F3 (Hθ), Fz-T7 
(Lθ), Fz-P3 (Hα) and Fz-P4 (Hα) showed a significant linear 
decrease of the PVL (t-test, p<0.05) throughout adaptation. 

  
Fig.2. Linear model capturing the changes in PLV for the pair of electrodes 
Fz-F3 (Lα; upper left panel), Fz-F4 (Lβ; upper right panel), Fz-C3 (Lβ; 
bottom left panel) and Fz-O1 (γ; bottom right panel).  
 

C. Correlation and Fitting Analysis 
The results for the correlation analyses showed that the 

relationships between the changes in PLV for the pairs Fz-
F3, Fz-F4,  Fz-C3, Fz-O1 and the MT and ML values were 
best fitted by using a logarithmic curve (R2≥0.40, 
RmseF<0.52).  

 
Fig.3. Representation of the PLV versus MT (first row) and ML (second 
row) for both movement planning (blue) and execution (red). (A, C) Pair 
Fz-F3 (low alpha band). (B,D) Pair Fz-C3 (low beta band). 

IV. DISCUSSION 
The main findings of this study are that the subjects 

showed a linear decrease in phase synchronization as they 
adapted to a new tool for the pair of electrodes Fz-F3, Fz-F4, 
Fz-T7, Fz-C3, Fz-P3, Fz-P4, and Fz-O1 during movement 
planning and execution. These results reinforce the idea that 
decreased phase synchronization reflects a refinement of 
cortical resources by attenuating non-essential 
communication, inducing an improvement in kinematics [4]. 

Therefore, these linear changes in phase synchronization 
that mirror human motor performance throughout adaptation 
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may provide potentially relevant brain biomarkers for 
tracking human learning/adaptation status when the learning 
of a new tool takes place. Specifically they could play a 
significant role in a broad range of applications related to 
brain monitoring and cognitive-motor status assessment. It 
must be noted that the biomarkers provided here do not 
contradict, but instead complement, those previously 
proposed [3]. Indeed, there is a need to combine several 
measurements using both univariate (e.g., spectral power) 
and multivariate (e.g., spectral coherence, PLV) techniques 
to obtain non-invasive, robust brain biomarkers.  

One potentially interesting role of such biomarkers would 
be to overcome some well-known difficulties related to BCI 
systems such as the need to use adaptive decoding, constant 
recalibration and the maintenance of stable performance 
while a user tries to control a neuroprosthesis [8]. A BCI 
system is a tool that the user learns to control by changing 
his/her cortical dynamics in an appropriate way (if sufficient 
feedback is provided). Such an adaptation relies mainly on 
the capacity of the user’s brain to change its cortical 
dynamics since generally the decoding parameters are fixed. 
Therefore, if the user’s performance degrades, frequent 
recalibrations of the decoding algorithms are required [8].  

In order to address these problems [9], some studies have 
proposed adaptive algorithms [10]. However, these 
approaches use supervised adaptation based on a priori 
knowledge of an external target. This actually represents a 
major pitfall for practical BCI applications since the user 
needs to decide when and where to direct his/her intentions. 
In ecological situations no external target is available [11]. 
Thus, these unresolved issues [12] may be solved by using 
the biomarkers evidenced here since they offer a new 
possibility to overcome this type of difficulty by providing 
reinforcement signals to guide the decoding process. The 
EEG biomarkers presented here might help to solve such 
important drawbacks by constantly adapting the decoding 
algorithm to the subject’s mental states, allowing thus, a 
stable co-adaptation/cooperation between the user and the 
BCI system. For example, the PLV computed for the low 
beta frequency band between the pairs of electrodes Fz-F3 
and Fz-C3 could be computed using a sliding window (e.g., 
15-20 trials). Then, if the PLV at these sites increases, 
indicating a poor performance by the user, the decoding 
algorithm parameters should be updated to compensate by 
using, for instance, a reinforcement learning signal. 
Alternatively, if the user adapts as indicated by a reduction 
of the PLV for the same sites and bands, no parameter 
adjustments are needed. 

The use of such biomarkers could also reveal the sources 
of alterations in behavioral performance, which cannot be 
revealed by kinematic parameters alone. For instance, poor 
learning/adaptation performance could be due to other 
factors such as stress or fatigue. These factors relate to an 
increased phase synchronization and generally for different 
electrodes pairs and/or frequency bands than those used here 
[13-14]. Therefore, these brain biomarkers can track the 
level of performance but also decipher or indicate potential 
causes of poor learning performance. As previously 
mentioned, these PLV (multivariate) brain biomarkers 

complement well those derived from univariate methods 
such as spectral power. It is important to realize that changes 
in phase synchronization for a specific frequency range do 
not necessarily imply similar power changes for the same 
electrodes [15]. For future real-time EEG ecological 
applications, brain biomarkers for individual subjects and 
single trials need to be available. Since EEG signals are 
highly variable from one trial to another, the combination of 
several brain biomarkers such as phase synchronization and 
spectral power will offer cross-information. Such 
information could provide robust, accurate, non-invasive 
brain biomarkers of motor performance and also insight into 
possible reasons for the failure of sensorimotor adaptation. 
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