
 

 
 

Abstract—Non-invasive EEG-based motor imagery brain-

computer interface (MI-BCI) holds promise to effectively 

restore motor control to stroke survivors. This clinical study 

investigates the effects of MI-BCI for upper limb robotic 

rehabilitation compared to standard robotic rehabilitation. The 

subjects are hemiparetic stroke patients with mean age of 50.2 

and baseline Fugl-Meyer (FM) score 29.7 (out of 66, higher = 

better) randomly assigned to each group respectively (N=8 and 

10). Each subject underwent 12 sessions of 1-hour rehabilitation 

for 4 weeks. Significant gains in FM scores were observed in 

both groups at post-rehabilitation (4.9, p=0.001) and 2-month 

post-rehabilitation (4.9, p=0.002). The experimental group 

yielded higher 2-month post-rehabilitation gain than the control 

(6.0 versus 4.0) but no significance was found (p=0.475). 

However, among subjects with positive gain (N=6 and 7), the 

initial difference of 2.8 between the two groups was increased to 

a significant 6.5 (p=0.019) after adjustment for age and gender. 

Hence this study provides evidence that BCI-driven robotic 

rehabilitation is effective in restoring motor control for stroke. 

I. INTRODUCTION 

troke is the third leading cause of death and the leading 

cause of severe disabilities in the developed world [1]. 

Stroke affects the quality of life of the survivors in their daily 

functioning in the workplace, home, and community. 

However, with effective rehabilitation, stroke patients could 

partially regain their motor control and continue their 

activities of daily living. Presently, physical therapy 

approaches are the most widely used treatment for stroke [2], 

which involves human therapists to assist the stroke patients 

in recovering their stroke-affected side of the body. Robotic 

rehabilitation augments the physical rehabilitation by human 

therapists and enables novel exercises that are not otherwise 

available [3]. Studies have shown that robotic rehabilitation 

helps to improve impairment of hemiparetic upper extremity 

after chronic stroke [4]. 

Recent advances in the analysis of brain signals have 
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enabled patients with motor disabilities to use their brain 

signals for communication and control [5]. The emergent  

non-invasive Brain-Computer Interface (BCI) technology is 

capable of bypassing the normal motor output neural 

pathways and directly translate brain signals into commands 

for controlling external devices [6-9]. This technology could 

restore motor control to stroke patients by showing the 

patient’s current state of brain activity, or supplement the 

patient’s impaired muscle control by detecting their motor 

intentions [5].  

The neurophysiological background behind the BCI 

technology in decoding motor intents is that motor activity 

[10], motor imagery [11] or somatosensory stimulation [12] 

modulates the relevant spatial localization of the sensori 

motor rhythm [13]. The localizations can be conceptualized 

using cortical homunculus (See Fig. 3 in [13]), which 

describes the topographical localization of the brain that is 

directly responsibly for specific motor and somatosensori 

activity. Studies have shown that distinct phenomena such as 

event-related desynchronization or synchronization 

(ERD/ERS) [14] are detectable from EEG for both real and 

imagined motor movements in healthy subjects [11], [15], 

[16]. Thus motor imagery-based BCI (MI-BCI) holds 

promise to recruit the motor system for stroke recovery [17].  

However, one of the challenges in MI-BCI is the huge 

inter-subject variability with respect to the characteristics of 

the brain signals [6]. In addition, since stroke patients suffer 

from neurological damage, the portion of the brain that is 

responsible for generating ERD/ERS in MI-BCI could be 

compromised. Nevertheless, a former study on BCI-naïve 

stroke patients revealed that they are capable of operating 

MI-BCI as effectively as healthy subjects, and their 

performance is not correlated with level of motor impairment 

[18]. This motivated the current study on the effectiveness of 

the synergy of non-invasive EEG-based MI-BCI with the 

clinically proven MIT-Manus robotic rehabilitation [4], [19]. 

The objective of this mind robot synergy is to capitalize on 

the motor intent detected from the MI-BCI for driving the 

stroke rehabilitation of paretic or plegic upper extremities. 

II. MI-BCI UPPER LIMB ROBOTIC REHABILITATION  

Motor network reorganization after stroke is known to be 

influenced by motor training [20], and studies have shown 

that effective movement therapy can be delivered from 

robots [21]. Active motor training using robots requires the 
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stroke patient to initiate movement whereby the movement is 

detected from the speed of moving the robot by the patient or 

through electromyography (EMG) [22]. This involves the 

voluntary drive from the stroke patient, but plegic patients 

with no moment in the hand cannot initiate movement. 

On the other hand, motor imagery incorporates the 

voluntary drive and directly involves the primary motor 

cortex [23]. Thus motor imagery opens up a novel backdoor 

to recruit the motor system at all stages of stroke recovery 

[17]. This motivates the development of a Motor Imagery-

based Brain-Computer Interface (MI-BCI) robotic 

rehabilitation in this work (refer to [24] for more 

implementation details). The architecture of the proposed 

MI-BCI upper limb robotic rehabilitation is illustrated in Fig. 

1, which synergizes MI-BCI with the clinically-proven MIT-

Manus robot [19] so that the voluntary drive from the stroke 

patient is captured as motor intent to drive the rehabilitation 

of paretic or plegic upper extremities. 
 

 
Fig. 1. Architecture of Motor Imagery-based Brain-Computer 

Interface (MI-BCI) for upper limb robotic rehabilitation 
 

The upper limb rehabilitation using the MIT-Manus robot 

employs motor training in the form of a video game whereby 

the subject is required to move the impaired limb towards the 

goal displayed on the video screen [19]. The subject’s 

impaired limb is strapped to the robot end-effector. If the 

subject cannot perform the motor task after a pre-defined 

period of 2 s after the onset of the visual cue, the robot will 

assist and guide the subject’s impaired limb towards the goal 

[22].  

In the proposed MI-BCI robotic rehabilitation, the MIT-

Manus robot is coupled with a non-invasive EEG-based MI-

BCI. There are two phases illustrated in Fig. 1, namely, a 

calibration phase and a rehabilitation phase. In the 

calibration phase, the subject is presented with a “go” or 

“stop” cue on the video screen. For the “go” cue, the subject 

is instructed to imagine moving the impaired limb without 

performing actual movement. For the “stop” cue, the subject 

is instructed not to imagine moving the stroke-affected limb. 

The purpose of this calibration phase is to address the inter-

subject variability with respect to the characteristics of the 

brain signals [6]. This is addressed by employing the Filter 

Bank Common Spatial Pattern (FBCSP) algorithm [25] to 

perform brain signal processing and machine learning on the 

EEG measurements acquired. The FBCSP algorithm 

comprises 4 progressive stages of EEG measurements 

processing: multiple bandpass filters using zero-phase 

Chebyshev Type II filters, spatial filtering using the 

Common Spatial Pattern (CSP) algorithm, feature selection 

of the CSP features, and classification of the selected CSP 

features. These 4 stages collectively construct a subject-

specific motor imagery detection model. 

As illustrated in the rehabilitation phase in Fig. 1, the 

FBCSP algorithm detects motor intent in the EEG 

measurements using the subject-specific model constructed 

in the calibration phase. If motor intent is detected, the MIT-

Manus robot directly assists the subject in moving the 

impaired limb towards the goal. The main difference 

between this proposed MI-BCI based robotic rehabilitation 

and the standard MIT-Manus robotic rehabilitation is that the 

former initiates robot-assisted movement if voluntary motor 

intent is detected whereas the latter initiates robot-assisted 

movement if no movement is detected after a pre-defined 

period of 2 s. 

III. EXPERIMENTAL STUDY 

This section describes the clinical study performed to 

investigate the effects of the proposed MI-BCI robotic 

rehabilitation compared to standard robotic rehabilitation. 

Fig. 2 shows the setup of the proposed MI-BCI robotic 

rehabilitation in a local hospital. The subject’s brain signals 

are acquired using non-invasive EEG and the affected limb is 

strapped to the MIT-Manus end-effector. The screen shows 

the current position of the end-effector, the goal, and the 

intensity of the voluntary motor intent detected. 
 

 
Fig. 2 The setup of the proposed Motor Imagery-based Brain-

Computer Interface (MI-BCI) robotic rehabilitation in a local hospital. 
 

As to-date, 47 hemiparetic subjects were recruited from 

stroke patients admitted to a neurorehabilitation facility 

linked to the local hospital with an acute stroke unit. A 

screening session was first performed on these stroke 

subjects to determine if they could operate MI-BCI 

effectively on the impaired limb (refer [18], [26] for details 

on the screening). 18 of these subjects were recruited for this 
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study. Ethics approval was obtained from the hospital 

institutional review board and informed consent was 

obtained from the subjects before recruitment into the study. 

Most of the subjects could not commit the time for 12 

sessions of rehabilitation and were thus not recruited. 
TABLE I 

DEMOGRAPHIC AND CLINICAL VARIABLES FOR STROKE SUBJECTS (N=18) 

 Stroke  
Gender 

M/F 

(%) 

Handed

ness 

R/L 

(%) 

Type 

I/H 

(%) 

Side 

R/L 

(%) 

Nature 

C/S (%) 

Mean 

age 

(Range) 

Days to 

trial 

(Range) 

FM 

(Range) 

MI-BCI 

Perform-

ance 

(% Range) 

10 M 

(55.6) 

10 R 

(55.6) 

6 I 

(33.3) 

10 R 

(54.3) 

5 C 

(20.0) 

50.2 

±12.4 

(23-65) 

385.5 

±293.5 

(57-

1053) 

29.7 

±17.7 

(4-61) 

80.1 

±7.1 

(71.0-

92.5) 

M indicates Male; F, Female; R, Right; L, Left; N, None; I, Infarction; H, 

Haemorrhagic; C, Cortical; S, Subcortical.; MI-BCI for Motor Imagery-

based Brain-Computer Interface; FM, Fugl-Meyer Assessment. 

Table I shows the demographic and clinical variables of 

these stroke subjects. The demographic variables are gender, 

handedness, age and duration from stroke admission to the 

clinical study. The clinical variables are type of stroke 

(ischaemic or hemorrhagic), side of stroke (right or left) 

from neuroimaging, nature of the stroke (cortical or 

subcortical), baseline Fugl-Meyer (FM) motor assessment 

before rehabilitation, and the accuracy of performing MI-

BCI from the screening session. The subjects were randomly 

assigned to the experimental group or the control group. The 

experimental group underwent the proposed MI-BCI robotic 

rehabilitation and the control group underwent standard 

robotic rehabilitation using the MIT-Manus. Each patient in 

either group underwent 12 sessions of 1-hour rehabilitation 

on the impaired upper limb for 4 weeks. 

27 channels of EEG measurements were acquired using 

Nuamps acquisition hardware (http://www.neuroscan.com) 

with unipolar Ag/AgCl electrodes channels, digitally 

sampled at 250 Hz with a resolution of 22 bits for voltage 

ranges of ±130 mV. EEG measurements from all channels 

were band-pass filtered from 0.05 to 40 Hz by the 

acquisition hardware. The control group did not involve any 

EEG measurements. The calibration phase of the 

experimental group acquired a total of 160 trials of EEG 

measurements that randomly comprised 80 trials of motor 

imagery and 80 trials of non-motor imagery. Each trial lasted 

for approximately 12 s. For each trial, the subject was first 

prepared with a visual cue for 2 s on the screen. Another 

visual cue then instructed the subject to perform motor 

imagery or non-motor imagery for 4 s, followed by 6 s of 

rest. The subjects were advised to minimize any body 

movement throughout the process expect during the rest 

period. 10 mins of rest were given in between every 40 trials. 

In the rehabilitation phase of the experiment group, the 

subject’s impaired limb was strapped to the MIT-Manus 

robot. The subject was then instructed to perform motor 

imagery of the impaired limb. The subject was first prepared 

with a visual cue for 2 s, then a “go” cue would instruct the 

patient to perform motor imagery for 4 s followed by 6 s of 

rest. If the voluntary motor intent was detected within the 4 s 

action period, the MIT-Manus robot would assist the subject 

in moving the impaired limb towards the goal. Since the 

movement of the robot was recorded, motor imagery and 

subject’s motion is discernable if motion was recorded 

during the action period before the robot-assisted motion. 

The 12-second trial protocol of the MI-BCI robotic 

rehabilitation limits the number of movements that stroke 

patient could perform within a certain time frame. In 

addition, motor intent could not be detected in some trials. 

Since each rehabilitation session from both groups was 

constrained to be within 1 hour, the number of movements 

performed by the subjects from each group differed 

significantly. On the average, the experimental group 

performed 122 robot-assisted movements whereas the 

control group performed 960 movements. 

The baseline and outcome measure were performed using 

the FM upper extremity scale, which is a 66 point ordinal 

scale that measures motor impairment of the affected upper 

limb [27]. A baseline measure was performed prior 

rehabilitation, and outcome measures were performed mid-

rehabilitation at the 2
nd
 week, post-rehabilitation at the 4

th
 

week, and 2-month post-rehabilitation at the 12
th
 week. The 

last outcome measure was performed to assess sustained 

post-rehabilitation motor improvements. 
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Fig. 3. Improvements in Fugl-Meyer score at the 3 endpoints for the 

experimental group (MI-BCI Manus), and control group (Manus) and 

combined group (All). (a) shows the results of 8, 10 and 18 stroke 

subjects for each group, (b) shows the results of 6. 7 and 13 stroke 

subjects for each group with positive improvements. 
 

Fig. 3(a) shows the outcome measures of the 3 endpoints 

of the experimental group, the control group, as well as the 

combined group. Statistical analysis was performed using 

Matlab. Statistical t-test on the combined group showed 

insignificant improvement in terms of FM scores at mid-

rehabilitation (1.5, p=0.132); but significant improvement 

were observed at post-rehabilitation (4.9, p=0.001) and 2-

month post-rehabilitation (4.9, p=0.002). The experimental 

group showed 2-month post-rehabilitation improvement of 

6.0 versus 4.0 from the control group, but no significant 

difference was found (p=0.475). 

The results in Fig. 3(a) showed a large deviation in the 

improvements in FM score of the upper extremity among the 

stroke subjects recruited for this clinical study. There are 2 

and 3 stroke subjects in the experimental and control groups 

respectively that showed no positive improvements in terms 

of FM scores relative to the baseline FM score (∆ FM ≤ 0). 
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For analysis purposes, Fig. 3(b) shows the results that 

excluded these stroke subjects whereby the initial difference 

of 2.0 between the experimental and control in Fig. 3(a) is 

now increased to 2.8, but still no significant difference was 

found (p=0.302). This difference of 2.8 between the two 

groups is increased to a significant 6.5 after adjustment for 

age and gender (p=0.019). This adjustment is performed on 

clinical studies in stroke so that the analysis is independent 

of age and gender in both groups [28]. This is performed by 

multi-linear regression using Matlab on the improvements in 

FM score with the group label, age and gender followed by 

analyzing the regression coefficient β and the p-value of the 

group label predictor. 

IV. CONCLUSIONS 

This clinical study showed evidence that the proposed MI-

BCI robotic rehabilitation is as effective as standard robotic 

rehabilitation in restoring motor control of upper limb for 

hemiparetic stroke, despite the significantly less motor 

activity performed in the former. Among the stroke patients 

with positive motor improvement, evidence suggests that 

MI-BCI robotic rehabilitation resulted in greater motor 

improvements than standard robotic rehabilitation. However, 

the results are currently inconclusive due to the large 

variations in motor improvements in both groups and the 

limited number of stroke patients recruited for the study. 

Since the recruitment of stroke patients for this study is still 

ongoing, a final conclusive result could be drawn from a 

larger scale study. Nevertheless, the outcome of this 

preliminary clinical study is promising as it demonstrated the 

role of BCI in neurorehabilitation. 
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