
  

  

Abstract—This paper describes an indentometer device used 
to identify the linear dynamic and nonlinear properties of skin 
and underlying tissue using an in vivo test.  The device uses a 
Lorentz force actuator to apply a dynamic force to the skin and 
measures the resulting displacement.   It was found that the 
skin could be modeled as a Wiener system (i.e. a linear dynamic 
system followed by a static nonlinearity).  Using a stochastic 
nonlinear system identification technique, the method 
presented in this paper was able to identify the dynamic linear 
and static nonlinear mechanical parameters of the 
indentometer-skin system within 2 to 4 seconds. The shape of 
the nonlinearity was found to vary depending on the area of the 
skin that was tested.   We show that the device can repeatably 
distinguish between different areas of human tissue for 
multiple test subjects. 

I. INTRODUCTION 
DENTIFYING the mechanical properties of skin and other 
biological tissues is important for diagnosing healthy from 

damaged tissue, developing tissue vascularization therapies, 
and creating injury repair techniques.  In addition, the ability 
to assess the mechanical properties of an individual’s skin is 
essential to cosmetologists and dermatologists in their daily 
work. Today, the mechanical properties of skin are often 
assessed qualitatively using touch. Quantitative 
measurements in a clinical setting can advance the field of 
tissue mechanics by standardizing assessments made by 
different individuals.  A device capable of measuring the 
mechanical properties of skin in a clinical setting needs to be 
low cost and robust while the testing procedure needs to be 
fast and accurate. The test also needs to be able fully 
characterize the dynamic linear and nonlinear aspects of the 
mechanical behavior of skin.  This paper describes a 
nonlinear stochastic system identification method which can 
be completed within 2 to 4 seconds using an indentometer. 

Many studies have explored both the linear and nonlinear 
properties of biological materials.  Testing methods used in 
these studies include suction [1][2], torsion [3], extension  
[4][5], ballistometry [6], and wave propagation [7].  
Commercial devices such as the Cutometer MKA580, 
DermaFlex, and Diastron dermal torque meter exist for some 
of these methods.  This paper focuses specifically on another 
method known as indentometry, [8][9][10] where a probe tip 
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is pushed orthogonally into the skin to discover tissue 
properties.  If large enough forces are used, this method is 
capable of measuring the mechanical properties of not only 
the epithelial layer but also the properties of the underlying 
connective tissue.  The interaction between different tissue 
layers [5][11] is important in applications like needle-free 
injection [12] where the dynamic response of skin to a 
perturbation is important in determining the required 
injection depth. 

In order to measure tissue properties in vivo, tests should 
be conducted quickly and each test should obtain as much 
information as possible.  In addition, the data acquisition and 
analysis method should be relatively immune to the 
movements of the patient during the test.  Linear stochastic 
system identification techniques, which have been used to 
describe a variety of biological systems [9][10][13], satisfy 
these criteria.  However, many systems cannot be fully 
described by linear dynamic models. Investigators have also 
used nonlinear relationships to describe the stress strain 
relationship in skin [2]. However, most of this work has 
been done at low frequencies and therefore does not describe 
the dynamic properties of skin.  We have used nonlinear 
stochastic system identification techniques on other 
biological materials [14][15][16]. Nonlinear stochastic 
system identification has not been previously used in the 
literature to characterize skin. This paper introduces a 
reliable, inexpensive indentometer device, outlines an 
analysis method and demonstrates its use in characterizing 
the parameters of human skin using nonlinear stochastic 
system identification.   

II. MATERIALS AND METHODS 
A mechanism (shown in Figure 1) was created to 

characterize human skin.  The goal of the device is to make 
it cost effective, easily scalable and marketable. 

 
Fig. 1. The handheld version (a) and desktop version (b) of the device 
used for nonlinear system identification. The device includes a voice 
coil actuator, bobbin, linear potentiometer, and bearing structure. 
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The design consists of a Lorentz force actuator, an external 
bearing, a low-cost linear position sensor and a current 
sensor.  A BEI Kimco magnet structure and a custom wound 
bobbin were used to create a linear Lorentz force actuator 
with an overhung coil.  The actuator has a stroke length of 
32 mm, an internal diameter of 25.2 mm and a coil 
resistance of 12 Ω.  The magnetic field strength crossing the 
coil is 0.53 T.  The tip contacting the skin is 4.4 mm steel 
disk with a thickness of 1 mm.  An external bearing structure 
was constructed with a linear bearing guide, a position 
reference surface, fixtures to hold the position sensor, and 
internal wiring guides.  Figure 2 shows the schematic 
diagram of the system along with inputs and outputs.   

   
Fig. 2. Schematic diagram of the system.  The input to the system 
(which includes the actuator and the tissue) is a voltage V*(t) that is 
sent through a linear power amplifier into the Lorentz force actuator 
that perturbs the skin.  The force applied to the skin is F*(t) and the 
position of the probe tip is P*(t). Because of different sources of 
sensor error e1(t) and e2(t), the measured force is F(t) based on the 
current I*(t)  and the measured position is P(t). 
 
 The input to the system is a voltage V*(t) that is amplified 

using a Kepco BOP 50-8D amplifier.  The sensors include a 
current sensor that measures the force output F(t) of the 
Lorentz force actuator (since current and force are linearly 
related) and a linear potentiometer to measure the position  
P(t) of the probe tip.  Data acquisition is controlled by a 
National Instruments USB 6215.  LabVIEW 8.5 was used to 
write the control program and user interface.  

The experimental procedure for obtaining data involves 
first checking the area of the skin for markings or signs of 
wear.  The tip of the device is then lowered to the skin 
surface with a predefined preload for 0.5 seconds.  The value 
of the preload is equivalent to the average of the force that is 
later applied during the test.  The system identification input 
is tailored such that the coil is always in contact with the 
skin and that the maximum force is less than 10 N.   

III. THEORY 
Skin is a dynamically nonlinear material.  As long as the 

nonlinearity is not even, the system can be broken up and 
analyzed as a linear dynamic component and a nonlinear 
static component.  For a more complete overview of the 
nonlinear system identification technique outlined by this 
paper, see Hunter and Korenberg [14][15]. 

Classical system identification uses Gaussian white inputs 
to the system.  In certain physical situations, however, it is 
not possible to achieve a high bandwidth input.  Input 
filtering is especially important for Weiner static 
nonlinearities because the manifestation of the static 

nonlinearity occurs only when the probe is able to explore a 
large range in the displacement.  However, in order to 
identify the dynamic components of the response, the input 
frequency must extend above the system’s natural 
frequency.  A balance between these effects must be found 
in order to determine the optimal stochastic input.  

Linear stochastic system identification is performed, in 
this situation, assuming a discrete finite impulse response 
(FIR) form for the discrete transfer function.  This leads to 
many desirable properties which allows the impulse 
response to be calculated directly from the input and output 
data. The impulse response to an FIR system is shown in 
Equation 1. Equations 2 and 3 show the biased 
autocorrelation function of the force and the biased cross 
correlation between force and position while Equation 4 
shows the Toeplitz matrix of the autocorrelation function. 
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The impulse response ĥ  is a function of the sampling 
frequency (Fs), the Toeplitz matrix of the autocorrelation 
function of the input force and the cross correlation function 
between the input force and the output position.  The 
maximum lag of the autocorrelation and cross correlation 
functions is M and the length of the input data is N.  To use 
the above equations, the data means must first be subtracted.    

In order to identify the static nonlinearity, the predicted 
linear output is first calculated from the convolution of the 
nonparametric impulse response and the input.  A free 
constant can be moved between the dynamic linear and static 
nonlinear estimates.  We chose to normalize the dynamic 
linear component by dividing the impulse response by the 
DC compliance.  Lastly, we iterate the linear and nonlinear 
identification algorithms to create a better overall estimate.   

IV. RESULTS  
Results were obtained from an area of the posterior 

forearm a distance of 40 mm distal from the wrist. An input 
with an appropriate cutoff frequency is first determined 
followed by linear and nonlinear system identification.  Then 
a parametric model is fitted to the data and the repeatability 
of the results is discussed.  The results presented below were 
obtained with the desktop version of the device.  

A. Input Filtering 
After exploring a range of input frequencies, it was found 

that an input cutoff frequency of approximately 200 Hz, 
implemented with an 8th order Butterworth filter, gave an 
optimal balance between displacement range, dynamic 
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bandwidth and the noise floor.  A sampling frequency of 2 
kHz was used with a test length of 4 seconds.  It was found 
that as little as 2 seconds is needed to obtain sufficient data 
for system identification. Figure 3 shows the resulting power 
of the input voltage, the measured force and the measured 
position as well as the coherence squared between the force 
and the position output of the system.  

 
Fig. 3. Magnitude square coherence between the input force and 
output position (a) and power spectral density (b) of the voltage input, 
the output force and the output position.  The input cutoff frequency 
is 200 Hz. 
 
At lower frequencies the system exhibits behavior that 

cannot be explained with a simple linear model since the 
coherence is less than 1.0. 

B. Linear System Identification 
The impulse response of the system is determined using the 
method described earlier.  Figure 4 (a) shows the impulse 
response of the system.  Figure 4 (b), which shows the Bode 
plot of the system, can be calculated from the ratio of the 
cross-power spectrum to the input power spectrum. 

 
Fig. 4.  (a) Impulse response of the system.  The grey dots are 
experimental data and the black line is a fit to a second order system. 
(b) The Bode plot of the system is valid up to the input cutoff 
frequency of 200 Hz. 
 
It can be deduced from the impulse response and from the 

Bode plot that the system has a second order transfer 
function.  A parametric model can therefore be created to 
obtain intuition about the system. 

 In this mechanical system, there is an effective mass M 
(contributions from coil mass and effective inertia of the 
skin), effective damping B (contributions from friction, eddy 
current damping, skin damping) and effective spring 
constant K (contributions from average skin stiffness).  This 
produces a second order transfer function in the Laplace 

domain of the form shown in Equation 5 when the input is 
current driven.  
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 The impulse response of the second order transfer 
function in Equation 2 was fitted to the measured data. 
Before dividing by the DC compliance, the effective mass 
was found to be 0.0912 kg (the measured probe and bobbin 
mass was 0.060 kg), the effective damping was found to be 
22.77 Ns/m, and the effective spring constant was found to 
be 4.67 kN/m. The impulse response can then be convolved 
with the input to create a predicted output.  The variance 
accounted for (VAF) of the nonparametric model is 75.79%.  
The VAF of the second order transfer function (parametric 
model) is 75.64%.   

C. Weiner Nonlinearity 
The predicted linear output is plotted against the measured 

output to show static nonlinearity in Figure 5.  

 
Fig. 5.  The static Weiner nonlinearity of the system with a parametric 
fit.  The gray dots show the predicted linear output while the black 
line indicates the nonlinear fit.  
 
After subtracting out the baselines of the data, a fit can be 

obtained of the nonlinearity in the form shown in Equation 6 
where x is the predicted linear output and y is the measured 
output. 

)1( 2
1

xCeCy −−=       (6) 
In this function, the parameter C1 is a measure of the total 

compressible thickness of the skin and underlying tissue 
while C2 can be interpreted as the constant that determines 
the stiffness of the material at different depths into the skin. 
Figure 6 shows a plot of the experimental data and the 
predicted response of the system. 

 
Fig 6. Experimental data (black dots) versus predicted output from 
the nonlinear model (grey line).   

 
 When the nonlinear model is convolved with the original 
input, the resulting VAF increased to 80.7%.  This increase 
in the VAF of about 5% indicates that the system can be 
better explained by the nonlinear model.  It is also important 
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to determine the repeatability of the data as well as to verify 
if the device is capable of differentiating between skin 
properties from different locations on the body. 

D. Differentiation 
The left anterior forearm 40 mm from the elbow and the 

left posterior forearm 40 mm from the wrist were tested for 7 
right handed males between the ages of 18 and 28. Five 
measurements were taken at each location using the same 
stochastic input.  Variation between individuals is more than 
ten times the variation between measurements for the same 
individual.  The means, standard deviations and the p-value 
from an ANOVA study are shown in Table 1. 

TABLE 1 
Linear and Nonlinear Parameters 

Quantity 
Anterior 
Forearm 

Posterior 
Forearm P-value 

Normalized Mass (g) 0.0256±0.0042 0.0532±0.0048 <0.0005 
Normalized Damping (Ns/m) 5.02±0.57 7.35±1.49 0.002 
Nonlinear Constant C1 (mm) 8.66±1.03 11.99±0.79 <0.0005 
Nonlinear Constant C2 (1/N) 0.170±0.023 0.287±0.069 0.001 

 
Note the normalized parameter estimates differ from the 

effective parameter estimates because the normalized 
parameters are achieved by dividing the impulse response by 
the DC compliance. This fixes the normalized spring 
constant at 1000 N/m. The p-values show that the linear and 
nonlinear constants are significantly different for the two 
positions demonstrating that the device can easily 
differentiate between the tissue properties at one site from 
those at another.  The posterior forearm has more damping 
as well as a larger compressible depth which are 
characteristic of more compliant tissue. The depth-dependant 
stiffness in the skin (C1 and C2) can be used to determine 
parameters needed for needle free injection or used as a 
measure of skin elasticity which has been studied for 
applications in cosmetics. 

V. CONCLUSIONS  AND FUTURE WORK 
In models generally used for viscoelastic materials, such 

as the Kelvin-Voigt model [4] or generalized Maxwell 
models, the system is represented by multiple springs and 
dashpots.  For the procedure presented in this paper where 
the bandwidth is between 1 and 200 Hz, the test is not long 
enough to excite significant responses from the elements in 
the system responsible for long-term effects.  However, 
nonlinear stochastic system identification used in 
conjunction with a longer test can identify the elements in 
the system that have longer time constants. 

This paper has shown that a static Weiner nonlinearity 
following a linear dynamic system can adequately describe 
the force to displacement relationship for indentometry on 
human skin.  The effective mass, damping, spring constant, 
and nonlinear constants can be derived from 2 to 4 second 
long tests in a repeatable fashion.  These results in 
combination with the low cost, flexible platform make the 
device accessible to a large target market. 

Future work includes a comprehensive analytical study on 
optimal input generation, real-time input generation, and 

real-time system identification.  In addition, testing should 
be expanded to include more participants so that population 
variation, levels of hydration, and connective tissue diseases 
can be characterized. 
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