
  

  

Abstract— In this paper, we show how evolutionary game 
theory can be embedded into a traditional optimal control 
framework in order to predict strategies for time-dependent 
drug dosages in the context of a growing pathogen population 
that exhibits the capacity to evolve in direct response to the level 
of applied drug. To illustrate our method for integrating 
evolutionary games with optimal control systems, we consider a 
simplified model that describes a generic trade-off between viral 
replication rate and drug resistance. The technique that we 
outline, however, is readily extendable to more complicated 
models that account, in more detail, for the specific biology of a 
particular pathogen of interest.   

I. INTRODUCTION 
NE of the primary challenges associated with treating an 
individual for a viral or bacterial disease is designing an 

effective and safe treatment scheme.  Ideally, one would like 
to be able to predict the optimal medication dosage as a 
function of time so that the individual being treated is rapidly 
cured while at the same time suffers limited drug associated 
side-effects. Quantitative prediction of the best 
time-dependent scheme for drug dosages, of course, requires 
a mathematical framework like optimal control theory.  While 
optimal control theory has, in the past, been used to suggest 
optimal drug dosages for particular diseases like HIV[1], 
these optimal control schemes typically assume that the 
pathogen remains passive and relatively unchanging.   

More recently, Kutch and Gurfil[2] have considered the 
problem of optimal drug dosages in a continuously-mutating 
viral population.   While their model captures the interplay 
between drugs and pathogens in a more realistic manner, it 
falls short of the true breadth of the viral response to the 
extent that it considers a single drug-resistant pool of HIV 
viruses, all sharing roughly similar dynamics. A more 
accurate description of infections, particularly those 
characterized by rapidly mutating pathogens like retroviruses, 
however, is a spectrum of viral strains, each having slightly 
different biological responses to the drug and also slightly 
different natural biology.  All of these strains, of course, 
compete with one another for survival and replication into the 
next generation.  The selective advantage associated with one 
strain over another, however, is crucially dependent on its 
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environment and, more specifically, on the level and type of 
drug treatment that it is experiencing.   

According to the competitive exclusion principle [3], 
strains which replicate more slowly in both drug and 
drug-free environments can never establish dominance within 
the host. As a result, the strains that need to be considered 
when analyzing the interplay between drugs and pathogen 
populations are only those strains that exhibit the largest 
replication rate for at least one drug concentration.  On the 
other hand, trade-offs between drug-resistance and replication 
capacity have been well documented [4-7]. As a result, 
replacement of one pathogen strain by another may be 
triggered by changing levels of drug dosages. 

The problem of competition for survival within a species 
has a long history in biological fields, starting with the 
seminal work of Darwin[8]. The mathematical framework for 
analyzing competition and evolution, however, appeared 
much later, primarily through the works of John Maynard 
Smith[9] who developed the theory of evolutionary games.  
More recently, evolutionary game theory has been extended 
and analyzed in several reviews[10, 11], and has found 
application to a wide array of different biological 
sciences[12], from rationalizing the emergence of particular 
behavioral phenotypes[13] to addressing questions regarding 
pathogen infectious strategies[14]. 

The mathematical framework of evolutionary games 
provides an obvious model structure for contemplating the 
interplay between pathogens and drugs, since it can be used to 
formally describe the competitive interactions that lead one 
pathogen strain to dominate and, ultimately, replace another 
pathogen strain as a result of varying drug treatments.  To our 
knowledge, however, no one has integrated evolutionary 
game theory into the context of optimal control in order to 
predict time-dependent schemes for drug dosages.  By 
embedding an evolutionary game into the viral dynamics 
associated with definition of an optimal drug treatment 
strategy, however, the predicted optimal control will naturally 
account for both viral population dynamics, and viral 
evolutionary dynamics (or Darwinian dynamics).  As a result, 
the optimal control scheme will not only function in the face 
of viral evolution, but also, will use viral evolution to its 
advantage.  In this paper, we consider a simplified model and 
show how several assumptions allow us to easily integrate 
evolutionary games into drug dosage optimal control 
formulations.  The model that we use is chosen to be simple 
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and illustrative; however the approach that we develop should 
be easily extended to more complicated, pathogen specific 
models that are of interest to the medical community.  

II. MODEL FORMULATION 

A. Viral Replication Dynamics 
To model viral population dynamics, we consider basic 
logistic growth.  Since, however, the model must specifically 
account for mutation and drug resistance, we additionally 
incorporate a parameter, um that describes the ‘mutational 
distance’ of a particular pathogen subpopulation from the 
wild-type (WT) strain.  This allows us to define the following 
equation for viral population growth 
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where g is the WT growth rate in the absence of drugs, K is the 
viral carrying capacity, ud is the concentration of drugs in the 
system, sd is a coefficient that describes the decrease in the 
rate of WT viral replication per unit drug and wr and wd are 
parameters that capture how rapidly viral replication and drug 
efficacy fall off as a function of mutational distance from the 
WT strain.   For notational simplicity, time has been 
suppressed in equation (1), although v and ud will exhibit time 
dependence.  Notice that in this model, we simplify the 
mutation space of the real system by assuming a generic 
mutational distance.  The assumption is that all strains that are 
competitive enough to establish at a specific drug dosage 
level exhibit a trade-off between replication capacity and drug 
resistance.  While this has been documented in certain 
pathogen systems[4], the use of a single dimension to 
represent the state space of potential gene combinations is 
obviously an approximation.  Additionally, we have assumed 
Gaussian functions to describe the dependence of both 
replication rates and drug resistance on mutational distance.   
In fact, even when projected onto one dimension, the use of 
Gaussian functions is somewhat of an oversimplification.  
Complicating factors include discontinuities that occur when 
no viable pathogen strains exist with intermediate ranges of 
replication rates and drug resistance, and the potential 
emergence of a mutant strain with both an increased 
replication rate and an increased drug resistance.  For these 
scenarios, evolution over a discrete set of states must be 
considered, and is beyond the scope of the present work.  
Provided, however, that both drug resistance and replication 
rates are relatively smooth functions of the idealized 
mutational distance measure, the technique that we use is 
valid.  In cases where replication rate and drug resistance are 
deemed to fall off differently, the Gaussian functions in 
equation (1) can be replaced by more suitable functional 
approximations for the landscape of viral properties. 
 

B. Viral Competition through Evolutionary Game Theory 
In traditional game theory, a payoff function is defined and 
players in the game are assumed to choose their strategies 
based on optimization of the payoff.  For evolutionary games, 
the payoff is taken as the number of progeny that an organism 
playing by a particular strategy will contribute to the next 
generation.  For our model of drug resistance, the pathogen 
strategy will be taken as mutational distance, um.  This allows 
us to define a fitness generating function, or G-function, for 
each possible pathogen strategy, 'mu .  From equation (1), the 
G-function can be extracted as the per virion replication rate 
for pathogens playing strategy 'mu , thus 
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In formulating equation (2) as the G-function, we have 
assumed that pathogen phenotypes congregate around some 
mean strategy value, mu .  In order for one pathogen strain to 
replace another at the population level, the G-function for the 
invading strain (and thus the strain’s relative fitness) must be 
greater than the G-function for the strain playing according to 
the average strategy value mu  

   
mm uu GG >'         (3) 

In standard evolutionary games, the G-function for a 
particular invading strain can be written as an explicit 
function of the average strategy, mu .  Equation (2), however, 
presents a slight twist on this typical formulation.  More 
specifically, while the G-function does depend on the average 
composition of the pathogen population, this dependence is 
not through the average behavior of the population itself, but 
rather it is through ud, the optimally selected drug dosage.  As 
a result, G-function dependence on mu does not evolve in real 
time as would be expected for a scenario where the 
dependence is directly correlated with a  natural, internal 
parameter of the system (eg. strain effects on the carrying 
capacity).  Rather, in equation (2) the dependence of G on mu  
emerges through selection of the time-dependent drug 
regimen that is applied to optimally defend against the 
pathogen population.  Because ud is an externally applied 
condition determined by rational medical professionals, it 
should, at least in theory, be selected based not only on the 
current state of the system, but also on the projected future 
state of the system.  In the current framework, where the goal 
is, itself, to predict the best drug treatment strategy ud as a 
function of time, we use optimal control over a time window T 
to relate ud in equation (2) to the state of the pathogen 
population and, in particular, to the average mutational 
distances mu that dominates in the community over the drug 
treatment period.  For all of the simulations in this paper, the 
time window is set arbitrarily at T = 1, however in a clinical 
setting, T would be chosen as the desired length of the 
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treatment period for a particular patient.  In what follows, we 
show how both ud and the evolutionary game can be solved 
for simultaneously by embedding the game theoretic 
treatment of viral competition into an optimal control 
framework through Darwinian Dynamics. 

C. Darwinian Dynamics for Strategy Evolution 
To develop an expression describing the time evolution of the 
population wide average pathogen strategy, mu , we begin by 
defining the average strategy in terms of population 
composition.  To do this, we express the sizes of the pathogen 
subpopulations as a function of pathogen strategy, v(um).  The 
average pathogen strategy can then be found as 
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We then take the derivative of equation (4) assuming that the 
strategies themselves do not change in time, but rather, that 
there are a fixed set of available strategies which may be more 
or less populated depending on the selective forces acting on 
the pathogen population at any given point in time.  This gives 
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where we have used equations (1) and (2) to arrive at the 
second equality above.  Equation (5) can be approximated by 
expressing the G-function term according to a first order 
Taylor expansion.  This gives 
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The derivation of Darwinian Dynamics presented above 
follows closely the approach taken by Vincent and Brown in 
[10]. The term σ2 is reflective of the overall rate of 
evolutionary change.  While σ2 could, technically, be 
calculated based on a specific model for viral growth, in 
reality, this term should capture additional complexities 
associated with strategy dynamics (see [10]).  As a result, it is 
often better to treat σ2 as a model parameter.   

D. Optimal Control for Drug Dosage Design 
The ultimate goal of this paper is to propose a formulation for 
predicting optimal time-dependent drug dosages in the 
context of a growing pathogen population that shifts 

according to intra-population competitive interactions in 
response to the drug dosage itself.  To that end, we now turn 
to the task of defining the optimal control problem.  In 
general, when considering optimal drug strategies, optimality 
is defined as some trade-off between reducing the pathogen 
load, and minimizing drug dosages, thus we define the 
optimal control problem as 
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where equation (8.d) can be derived from equations (2) and 
(6), while equation (8.e) is equation (1) evaluated at the 
average pathogen strategy value, mu .  Notice that mu  in 
equation (8.e) is now a function of time, since the average 
pathogen strategy shifts in response to the drug treatment.  In 
equation (8.a), the parameter β reflects the cost of high drug 
dosages relative to high pathogen loads, and should be chosen 
to reflect not only the monetary costs associated with the 
drug, but also the health costs including risk of damage to 
organs, risk of death, etc.  The other parameter in equation 
(8.a), α, reflects the relative cost of having a high pathogen 
load at the end of the treatment and should be chosen to bring 
the pathogen population to within acceptable levels over the 
treatment period, T. 

III. RESULTS AND DISCUSSION 
To solve the optimal control problem in equation (8), we use 
the Pontryagin Maximum Principle.  More specifically, we 
define the Hamiltonian for the system as 

vuuvH vmud λλβ +++= 22          (9) 
 

where λu and λv are costate variables for v and mu  
respectively.  We then define the adjoint equations from the 
Hamiltonian according to the relationships mu uH ∂−∂=λ  

and vHv ∂−∂=λ . Last, we find an expression for the 
optimal control, ud , by solving the equation 0=∂∂ duH . 
This gives 
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which can be substituted back into both equations (8.d) and  
(8.e) and the adjoint equations.  We thereby arrive at a set of 
four coupled ordinary differential equations which, together 
with the initial conditions in equation (8.b), and the final 
conditions λu(T) = 0 and λv(T) = α, completely define the 
optimal  control system.  In what follows, we use a 
backward-forward sweep algorithm that integrates the state 
variables forward in time and the costate variables backward 
in time iteratively until the solution has converged. Figure 1 
shows the results of a simulation for g = 100, sd = 1, K = 
10000, v0 = 2000, (0) 0.001mu = , α = 10000, σ = 5 and 
various values of wr, wd and β. 
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Figure 1  (a) pathogen load, (b) average ‘mutational distance’ and (c) optimal 
drug dosage.  The parameters used are g = 100, sd = 1, K = 10000, v0 = 2000, 

(0) 0.001mu = , α = 10000,  σ = 5, β = 1 (grey lines), β = 10 (black lines), wr 
= 8, wd = 10 (solid) and wr = 10, wd = 8 (dotted). 

From these simulations, we see several trends.  First, 
optimal drug dosages vary more significantly through time 
when the cost associated with drug application is higher.  
Similarly, lower costs result in a significantly higher level of 
drug application overall, as would be expected.  Another, less 
intuitive trend, however, is the observation that when 
pathogen replication rates fall off more rapidly than drug 
resistance with mutation, the optimal drug strategy is to limit 
drug application during the first half of the treatment phase, 
and then to increase the drug load over the second half of the 
treatment phase.  In contrast, when pathogen replication rates 
fall off less rapidly than drug resistance with mutation the 
optimal drug strategy is to use high drug dosages during the 
early phase of the treatment regime, and then to drop the drug 
dosages as the treatment process proceeds. 

IV. CONCLUSIONS  
In this paper, we have shown how an evolutionary game 
describing competitive interactions within a pathogen 

population can be embedded into an optimal control 
framework for predicting drug dosage strategies.  Though this 
technique was presented for a very generic model of pathogen 
population dynamics in the presence of an applied drug, the 
method can easily be extended to more complicated models, 
or models that are developed to specifically describe the 
population dynamics of a particular pathogen population.  By 
embedding game theory into the standard optimal control 
framework, we naturally consider pathogen evolution in 
devising the optimal control strategy.  As a result, drug 
dosages are selected to best defend against a pathogen invader 
not only in the face of pathogen population growth, but also in 
the context of pathogen mutation that drives pathogen 
evolution in response to the drug treatment strategy.  Given 
that our optimal control framework explicitly accounts for the 
actions of drugs on pathogen population composition, we 
suggest that this novel integration of evolutionary game 
theory and optimal control will prove particularly useful in 
devising treatment strategies for pathogens, including 
retroviruses like HIV, that are characterized by rapid mutation 
rates and the frequent emergence of drug resistant strains. 
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