
  

  

Abstract—A falls detection system, employing a Bluetooth-
based wearable device, containing a triaxial accelerometer and 
a barometric pressure sensor, is described. The aim of this 
study is to evaluate the use of barometric pressure 
measurement, as a surrogate measure of altitude, to augment 
previously reported accelerometry-based falls detection 
algorithms. The accelerometry and barometric pressure signals 
obtained from the waist-mounted device are analyzed by a 
signal processing and classification algorithm to discriminate 
falls from activities of daily living. This falls detection 
algorithm has been compared to two existing algorithms which 
utilize accelerometry signals alone. A set of laboratory-based 
simulated falls, along with other tasks associated with activities 
of daily living (16 tests) were performed by 15 healthy 
volunteers (9 male and 6 female; age: 23.7 ± 2.9 years; height: 
1.74 ± 0.11 m). The algorithm incorporating pressure 
information detected falls with the highest sensitivity (97.8%) 
and the highest specificity (96.7%). 

I. INTRODUCTION 
ALLS and fall induced injuries among elderly people are 
a major cause of morbidity. One in three elderly people 

living in the community are at risk of falling one or more 
times in a year; one in four end up with serious injuries. 
Moreover, falls constitute a significant health care cost [1], 
[2]. Recent data, which considers the changing Australian 
age demographic, estimates that falls injury costs will 
increase twofold over the next 50 years [3]. 

During the last decade, technological advances in 
microcontrollers, miniaturization of transduction sensors and 
wireless communication have permitted the development of 
wearable devices for clinical applications [4]. A number of 
wearable devices based on accelerometers have previously 
been used to detect falls [5-7]. 

An accelerometry-based falls detector, worn on the belt 
was developed by Noury et al. [5]. The system is capable of 
recognizing different body postural orientations and 
detecting when the rotational speed of the trunk exceeds a 
fixed threshold. 

Zhang et al. [6] developed a falls detection system based 
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on a triaxial accelerometer embedded in a mobile-phone. 
The testing protocol consisted of simulated falls and high 
intensity daily activities performed by young volunteers, in 
addition to ordinary activities of daily living performed by 
elderly subjects. Some falls were also simulated using an 
anthropomorphic test device.  

Another system, implemented by Karantonis et al. [7], is a 
waist-mounted triaxial accelerometer unit used to classify 
different human movement. The algorithm has been tested 
on different kinds of movement including a limited number 
of different types of falls. In this paper we compare the 
proposed system to that of Karantonis et al. [7]. 

The aim of this study is to evaluate an algorithm for falls 
detection using a wireless waist-mounted device which 
contains both a triaxial accelerometer and an atmospheric air 
pressure sensor. Without the information about the change in 
altitude associated with falling, some events that may occur 
during daily life, such as sitting heavily into a chair, 
transitioning down a step or ledge, or climbing into bed, 
could be indistinguishable from a real fall, when classified 
using solely accelerometry data. Moreover, using only 
accelerometry signals, even a necessary act like placing or 
removing the device from the belt could be falsely detected 
as a possible fall. Finally, in a realistic scenario, an elderly 
person could attempt to break the fall and the impact may 
therefore not be characterized by an extreme acceleration 
peak.  

Only limited reports of combined accelerometric and 
barometric pressure signals have appeared in the literature. 
For example, Ohtaki et al. [8] used such signals to classify 
different types of ambulatory physical activities. The initial 
hypothesis of our study was that determining a change in 
altitude associated with falling would improve falls 
detection accuracy. 

II. METHODS 

A. System design 
The data acquisition device consists of a triaxial 

micromachined accelerometer (MMA7260, Freescale) 
which measures the acceleration along three orthogonal axes 
with a sampling rate of 40 Hz and an adjustable full-scale 
deflection between ±1.5 G and ±6 G (where G represents 
acceleration due to gravity: 9.81 m/s/s), an atmospheric air 
pressure sensor (SCP1000, VTI Technologies) with a 
resolution of 1.5 Pa (which corresponds to about 10 cm at 
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sea level) and a sampling rate of 1.8 Hz, 
(MSP430F149, Texas Instruments), a B
(WML-C30AH, Mitsumi) and a Li-Pol rech
The small wireless device measures 70×
weighs 57.5 g. The device can be attached
belt in correspondence to the right anterior
pelvis, and measures the barometric p
accelerations relative to the trunk alon
mediolateral and anteroposterior directions. 

B. Subject database 
Fifteen healthy volunteers (9 male and 6 

± 2.9 years; height: 1.74 ± 0.11 m) participa
All data were collected in a controlled l
with the University of New South Wales (S
Ethics Committee approval. 

C. Trial experiment protocol 
A set of 16 different ambulatory and fal

first three columns of Table I) were desi
performance of each falls detection algorit
the sequences include intentional falls p
mattress (thickness 18 cm) and a set of a
living. 

Falls in three different directions (forwar
lateral) were evaluated (sequences 1, 2 and
simulated the situation where the subject, a
to recover without success (active lying). A
a more realistic scenario, some elderly peo
to break their fall, sequence 5 was introdu
was also tested on cases where the subject e
the floor, after first resting against a wall 
vertically down to the end in the sitting po
6), which we assume mimics an individual 
consciousness. To test the ability of the syst
events whose classification are dependent o
the subject performed two falls in the fo
followed (after 5 s) by a recovery: in one
was asked to rise and walk and in the othe
to rise and stand still (sequences 7 and 8 
addition, seven activities of daily living 
(from sequence 9 to 16). 

Each subject performed one instance o
The data recording included 20 s and 6
before and after each event. Fig. 1 shows a 
a simulated lateral fall. 

D. Feature extraction 

In order to develop an algorithm to det
features of interest are extracted from the a
barometric pressure signals. The two pre
performed by Karantonis et al. [7] on the r
in the current analysis. The first step is 
(n=3). The second step is low-pass filte
third-order elliptical infinite response (IIR) 
band edge-frequency of 0.25 Hz is applie
filtered signal. The low-pass filtered signal

a microprocessor 
Bluetooth module 
hargeable battery. 
×54×14 mm and 
d to the subject’s 
r iliac crest of the 
ressure and the 
ng the vertical, 

female; age: 23.7 
ated in this study. 
laboratory setting 
ydney, Australia) 
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thm. Specifically, 
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after falling, tries 
Assuming that, in 
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uced. The system 
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and then sliding 
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who slowly loses 
tem to distinguish 
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er case was asked 

respectively). In 
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60 s respectively 

sample output of 

tect falls, several 
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raw data are used 
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ering, whereby a 
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l is an estimation 

Fig. 1.  Data obtained during a simulated
along ݕ ,-ݔ- and ݖ-axis were median filte
barometric pressure signal was low-p
Butterworth filter with cut-off frequency at

of the gravitational acceleration (
subtracted from the median filter
estimation of body acceleration (BA

1) Acceleration peak: The signal m
provides a measure of the degree of
it is derived from the BA compo
calculated as following: 

    SVMሾ݅ሿ ൌ ඥݔଶሾ݅ሿ ൅ ଶݕ
where ݔሾ݅ሿ is the ݅୲୦ sample of the Bݔ-axis samples (similarly for ݕሾ݅ሿ an

2) Activity and rest: A suitable
periods of subject activity and rest
area (SMA) obtained using the BA
sample (݆ ൌ 0,1, 2, … ݊ሻ of SM
calculated as following: 

    SMAሾjሿ ൌ ܶ ∑ ሺ|ݔሾ݅ሿ| ൅௜ୀ௝ାభ೅௜ୀ௝
where ݔሾ݅ሿ, ݕሾ݅ሿ and ݖሾ݅ሿ are the BAݕ- and ݖ-axis samples, respectively
period. The SMA was calculated b
value progressively over a 1 s inter
the windows. 

3) Postural orientation: The G
information on the tilt angle of t
device. The tilt angle, Φ, is defined 
gravitational vector, ࢍ, derived from
(G=9.81 m/s/s) and the acceleratio
along the positive ݖ-axis by the relat

                                     Φ ൌ cosିଵሺ ݖ
In this study, we define that a tilt an
indicates a standing position, while
indicate a non-standing body orienta

4) Differential pressure: The pre
low-pass filtered using a second 
with cut-off frequency at 0.1 Hz and
interpolation to the acceleration sam
resulting signal was used to ca
pressure parameter (ΔPሾ݇ሿ). The ݇୲୦

 

 
d lateral fall. The accelerations 
ered (n=3 at 40 Hz), while the 
pass filtered (second order 
t 0.1 Hz). 

(GA) component and is 
red signal to obtain an 

A). 
magnitude vector (SVM) 
f movement intensity and 
nent. The SVM can be 
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A component [9]. The ݆୲୦ 
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A components of the ݔ-, 
y, and T is the sampling 
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as the angle between the 

m the GA, its magnitude 
on component measured 
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e values greater than 20° 
ation. 
essure sensor signal was 
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Fig. 2.  Flow chart for the falls detection process (A
analyzed to detect abnormal acceleration peaks, whi
∆P indicates if the device altitude has significantly
angle indicates the postural orientation. The two thr
low_th) on SMA indicate the grade of measured acti

obtained considering the average pressure
before and the 2 s after each sample 
windows): 

          ΔPሾ݇ሿ ൌ ܶ/2 ∑ ሾ݅ሿ௜ୀ௞ାଶ݌ ்⁄௜ୀ௞ െ ܶ/2 ∑௜௜
where ݌ሾ݅ሿ is the ݅୲୦ sample of the barome
is the sampling period. The ∆P signal was
by dividing by the subject’s height. 

E. Fall detection algorithms 
Three different falls detection al

investigated. These algorithms were all tes
set of data. 

Algorithm 1, derived from the classifi
implemented by Karantonis et al. [7], w
detection of an impact by the comparison 
preset threshold. The optimal threshold wa
G, and the signal was required to exceed th
least two consecutive samples. When su
occurs, the current time period is classified 
If a possible fall is detected, the SMA o
measured to determine the amount of mov
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fall). If the system recognizes that no activ
during this post-fall interval, i.e. SMA doe
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Algorithm 2 was developed by augment
algorithm to consider the postural orientati
In addition to the comparison of the S
threshold, an event is classified as a possib
detection of the impact is followed by
classification of body orientation. If the sub
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Algorithm 3 (Fig. 2) was de
parameters considered in the previou
SMA and Φ). In addition the ∆P 
improve classification performan
acceleration peak is detected, by 
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thresholding of ∆P (with a h
threshold) indicates that the device 
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standing position, the event is classi
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during the 60 s post-fall interval an
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a fall (Fig. 3). The system is able to
was able to rise again during the 60
classified as a possible fall. If the sy
device altitude is significantly c
detecting an abnormal acceleratio
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position, the event is classified a
activity (low threshold on SMA) ha
s post-fall interval, the classification

Fig. 3.  Sample output of a simulated b
(SVM th.) detects abnormal accelerat
Pressure has been normalized by dividin
thresholding (∆P th.) indicates change in a

III. RESULT

A total data set of 240 se
retrospectively in MATLAB versio
sensitivity, specificity and accuracy
The overall accuracy of each seque
percentage of correct classifications
fifteen subjects (Table I). The s
Algorithm 1 as a possible fall are co
subjects recover after the fall, or n
classified as a possible fall by Algor
is considered correct. In order to c
of the three algorithms, the ac
specificity were considered (Table I
falls can be detected with the highes
the highest specificity (96.7%) b
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thresholding the SVM 
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angle indicates a non-

ified as a possible fall. If 
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o recognize if the subject 
0 s period after the event 
ystem recognizes that the 
changed, even without 

on peak, but the SMA 
bject is in a non-standing 

as a possible fall. If no 
as occurred during the 60 
n is upgraded to a fall. 

 
backward fall. SVM threshold 
tion peaks. The Differential 
ng by the subject’s height; its 
altitude. 

TS 
equences was analyzed 
n 7.5 to determine the 

y of the three algorithms. 
ence is calculated as the 
s made, taken across the 
sequences classified by 
onsidered incorrect if the 

no fall occurs. If a fall is 
rithm 1, the classification 
ompare the performance 

ccuracy, sensitivity and 
II). The results show that 
st sensitivity (97.8%) and 
by Algorithm 3, which
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TABLE I 
NUMBER OF CORRECT AND INCORRECT CLASSIFICATIONS AND ACCURACY CALCULATED FOR EACH SEQUENCE

 

incorporates pressure information. Algorithm 1 can 
distinguish falls with 75.5% sensitivity, while the addition of 
postural orientation in Algorithm 2 does not improve 
sensitivity but specificity increases from 66% to 90.7%. 

TABLE II 
ACCURACY, SENSITIVITY AND SPECIFICITY OF THE THREE ALGORITHMS 

 Algorithm 1 Algorithm 2 Algorithm 3 
Accuracy   (%) 69.6 85.0 97.1 
Sensitivity (%) 75.5 75.5 97.8 
Specificity (%) 66.0 90.7 96.7 

IV. DISCUSSION 
The purpose of this study was to evaluate the performance 

of a falls detection system based on a triaxial accelerometer 
and a barometric pressure sensor. An existing algorithm, 
based on the use of a triaxial accelerometer was evaluated. 
The augmentation of this existing algorithm, through the 
inclusion of information regarding postural orientation, 
gleaned from the triaxial accelerometry signal, was also 
evaluated. Finally, a measure of barometric pressure was 
employed, as a surrogate measure of altitude, to improve 
upon the previous algorithms. 

A significant limitation in the system implemented by 
Noury et al. [5] was the inability to detect falls where the 
subject falls to the floor, after first resting against a wall and 
then sliding vertically down to the end in the sitting position. 
In these kinds of falls, the authors report less than 19% 
accuracy. By including pressure information it is possible to 
detect a fall followed by loss of consciousness, even if the 
fall is not characterized by a considerable trunk rotation 
speed, or by an abnormal acceleration peak. 

 Zhang et al. [6] achieved an overall accuracy of 93.3% in 
falls detection but obtained only 84.4% accuracy when high-
intensity daily activities (e.g. running, or jumping) were 
performed and 89.1% accuracy when the subject handled the 
mobile-phone causing acceleration (e.g. turning the hand, 
tremble). Results show that using the information about the 
change in altitude associated with falling could help to 
decrease the number of events associated with a relevant 
acceleration and incorrectly classified as a fall. 

Compared to the system developed by Karantonis et al. 
[7] this approach, which included the pressure information, 
demonstrated an improved performance in detecting 

recoveries from falls events. The authors [7] proposed to add 
a user input to their system in order to reduce the incidence 
of false alarms. Results show that using a barometric 
pressure sensor could make that alteration less critical. 

About 40% of the sequences in which the subject climbed 
into bed were not classified as a fall, even if the ∆P signal 
exceeded the threshold, only because the system detected 
some activity during the 60 s post-fall interval. If the 
individual enters the bed and immediately remains 
motionless, a false detection may occur. Also, a finer 
resolution pressure transducer might help discriminate the 
altitude difference between lying on a bed and lying on the 
ground. 

Finally, it is necessary to test the system on elderly people 
and to evaluate the system sensitivity and specificity in a 
real environment, where unpredictable changes in pressure 
may generate false alarms. 
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   Algorithm 1 Algorithm 2 Algorithm 3 
 No Category Instructions Overall 

Correct 
Overall 

Incorrect 
Accuracy 

(%) 
Overall 
Correct 

Overall 
Incorrect 

Accuracy 
(%) 

Overall 
Correct 

Overall 
Incorrect 

Accuracy 
(%) 

 1 Fall Forward fall, ending lying 15 0 100 15 0 100 15 0 100 
 2 Fall Backward fall, ending lying 15 0 100 15 0 100 15 0 100 
 3 Fall Lateral fall, ending lying 15 0 100 15 0 100 15 0 100 
 4 Fall Forward fall, ending active lying 15 0 100 15 0 100 14 1 93.3 
 5 Fall Forward fall with attempt to break the fall 7 8 46.7 7 8 46.7 15 0 100 
 6 Fall Resting against a wall, then sliding vertically

down to the end in the sitting position 
1 14 6.7 1 14 6.7 14 1 93.3 

 7 Fall with recovery Forward fall, recovery and walking 0 15 0 15 0 100 15 0 100 
 8 Fall with recovery Forward fall, recovery and standing 0 15 0 15 0 100 15 0 100 
 9 No fall Sitting on a chair 15 0 100 15 0 100 15 0 100 
 10 No fall Collapse into a chair 4 11 26.7 4 11 26.7 12 3 80 
 11 No fall Climbing  into bed 12 3 80 12 3 80 13 2 86.7 
 12 No fall Jump in vertical direction 8 7 53.3 15 0 100 15 0 100 
 13 No fall Pick up something from the floor 15 0 100 15 0 100 15 0 100 
 14 No fall Bend down and doing own laces 15 0 100 15 0 100 15 0 100 
 15 No fall Taking the lift 15 0 100 15 0 100 15 0 100 
 16 No fall Walk down the stairs (6 steps) 15 0 100 15 0 100 15 0 100 
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