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Abstract— Injuries due to falls are among the leading causes
of hospitalization in elderly persons, often resulting in a rapid
decline in quality of life or death. Rapid response can improve
the patients outcome, but this is often lacking when the injured
person lives alone and the nature of the injury complicates
calling for help. This paper presents an alert system for fall de-
tection using common commercially available electronic devices
to both detect the fall and alert authorities. We use an Android-
based smart phone with an integrated tri-axial accelerometer.
Data from the accelerometer is evaluated with several threshold
based algorithms and position data to determine a fall. The
threshold is adaptive based on user provided parameters such
as: height, weight, and level of activity. The algorithm adapts
to unique movements that a phone experiences as opposed to
similar systems which require users to mount accelerometers to
their chest or trunk. If a fall is suspected a notification is raised
requiring the user’s response. If the user does not respond, the
system alerts pre-specified social contacts with an informational
message via SMS. If a contact responds the system commits
an audible notification, automatically connects, and enables the
speakerphone. If a social contact confirms a fall, an appropriate
emergency service is alerted. Our system provides a realizable,
cost effective solution to fall detection using a simple graphical
interface while not overwhelming the user with uncomfortable
sensors.

I. INTRODUCTION

As age related changes in reaction time and balance reduce

the capabilities of people, the likelihood of a fall leading to

significant injury increases. Not only are fall related injuries

the number one reason for emergency room visits, they are

also the leading cause of injury-related deaths among adults

65 years of age and older [19]. Every year, more than 11

million people fall [4]. In 2005, unintentional falls accounted

for an estimated 56,423 hospitalizations and 7,946 related

deaths in the United States [24]. Many of these deaths are a

result of a “long-lie,” an extended period of time where the

victim remains immobile on the ground [3]. Just the simple

fear of a long-lie or falling can lead to the worsening of

one’s mental health, isolation, and the general degradation

of his/her quality of living [21], [7].

Current systems are available that attempt to reduce the

long-lie period by alerting emergency services when a fall

has been detected. These systems commonly use one of three

methods for classifying a fall:

1) Acoustic/vibration recognition: This is achieved by

having a device, usually implanted in the floor, monitor

sound and other vibrations. It listens for the vibratory

signature of a human fall, which is vastly different

from the signatures of walking, small objects falling,

and other common activities [1], [22].

2) Image recognition: By using overhead cameras in a

fixed location, one can track objects and learn move-

ment patterns. The system adapts to the locations

in which a single human enters/exits the room and

remains inactive (lying/sitting on bed/chair). Common

paths from entry points to inactive areas are then traced

and remembered. It suspects a fall if a person becomes

inactive in the middle of a common path [13], [15],

[23], [16].

3) Worn Devices: These systems require the user to wear

external sensors. The devices track the vector forces

exerted on the user. Usually these devices are a tri-

axial accelerometer or gyroscope. If a specific pattern

or threshold is broken, the device alerts a wireless

receiver, which then alerts emergency contacts [7],

[26], [8].

The majority of fall detection systems require some appli-

cation specific hardware and software design. This increases

cost and limits the commercial viability to the wealthiest, or

most impaired, users. Many also have significant installation

and/or training times, also limiting greater adoption. Despite

implementation differences, all designs have the same re-

quirements: reliability, ease of installation/use, and restriction

of false positives [7]. Falls are often sparse with months

between occurrences, thus the system must always be ready

and accurate. If installation costs or training time is high,

users will reject the system. However, the major reason for

failure is rejection by monitoring services due to a high

number of false alarms [17], [20].

We propose a low priced system that is well suited to all

the requirements by using existing mainstream technologies

that are reliable and ubiquitous. Our approach is to use the

number one fasting growing device which billions of people

already own, a programmable cellular phone [25]. Using

existing cell phone technology not only reduces the cost to

the patient, it also exploits a greater range of communication

capabilities and integrated hardware and software features.

Touch screen response and voice recognition, common to

smart phones, provide a reliable interface for the user. By

using interfaces that are similar to applications the user

frequently uses, the rare interaction with the fall detection

software should be familiar. Cell phones are also more

discrete than a dedicated monitor device, which will reduce

rejection due to the device’s poor aesthetic value and intru-

siveness [7]. To limit false positives we implement several

fall detection algorithms and two stages of communication.
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When a fall is detected, we first communicate with the user.

If the user does not respond, we then attempt to contact

members in his/her social network. If both fail or the social

contact confirms a fall, the system alerts an emergency

service.

II. MATERIALS AND METHODS

A. Operating System

We chose to use the Android software stack produced

by Google. Android is an open source framework designed

for mobile devices that packages an operating system, mid-

dleware, and key applications [10]. The current prototype

is deployed on the G1 by manufactured by HTC [6]. The

Android SDK provides libraries needed to interface with

the hardware and make/deploy an Android application [11].

Applications are written in Java and run on the Dalvik virtual

machine. Android uses a SQLite database to store persistent

data.

Unlike dedicated systems, our software is intended to inte-

grate with the phone’s existing applications. Our application,

iFall, must share resources with the other apps. To make

for a pleasant integration, iFall runs as inconspicuously as

possible while using limited resources. We launch a back-

ground service that constantly listens to the accelerometer.

Only when the algorithm described in the following section

suspects a fall will the service wake up and interrupt the

user. If the user responds, the previous activity is restored

and iFall will sleep again. By only waking up the activity

when a fall is suspected or requested by the user, we allow

applications to run on top of iFall while we minimize our

memory consumption and user interaction.

B. Fall Detection

Activities of Daily Living (ADL) are normal activities

such as walking and standing. The forces exerted during

ADL are usually different than the forces during a fall. By

taking the root-sum-of-squares of the accelerometer’s three

axials, we are able to determine the acceleration [3]. A fall

typically starts with a short free fall period. This causes the

acceleration’s amplitude to drop significantly below the 1G

threshold [3]. This represents the period of time when the

actual fall is taking place. The fall must stop and it causes

a spike in the graph. The amplitude then crossing an upper

threshold suggests a fall. Typically the minimum value for

the upper threshold is around 3G [5]. If a person is seriously

injured in a fall they usually remain on the ground for a

period of time. This is characterized by the 1G flat line at

the end of the graph in figure 1. All events occur within a

short duration.

If the amplitude crosses the lower and upper thresholds in

the set duration period a fall is suspected. However, relying

strictly on this method would produce an intolerable number

of false positives since certain ADL and the upper threshold

can overlap [2]. We refine the algorithm by taking position

into consideration. The assumption is a fall can only start

from an upright position and end in a horizontal position

[14]. Thus the difference in position before and after the

Fig. 1. A classic fall example. Denoted by amplitude crossing the lower
and upper threshold, followed by a long-lie.

fall is close to 90
◦ [26]. A fall is only suspected if both

thresholds are crossed within a duration and the position

is changed. Dropping the phone is a frequent motion that

resembles a suspected fall. Also a fall may occur but, be

minor leaving the user unharmed. To prevent these false

alarms we add one more stage to the process, recovery.

If a fall is suspected, we start a short timer. This timer

allows a fallen user to regain an upright position or a

dropped phone to be picked up. If the original position is

restored within the time limit the algorithm is reset. If the

timer expires and position is not restored, we assume the

phone/user is lying on the ground [9]. It then emits a prompt

that requires the user to respond within a short time window.

A fall is confirmed if the user does not respond. This allows

users to reduce the number of false positives. An alert only

sends when a fall is confirmed.

C. Application Features

The iFall application is designed to be simple to use.

To achieve this, we severely limit the number of buttons

and options available to the user. The main screen consists

of one button, light background, and large, bold lettering.

The button starts and stops the fall monitor while the label

displays the state. The fall monitor is implemented as a low-

powered, Android service. A service allows the fall monitor

to constantly run in the background. When the monitor

suspects a fall, an intent is sent to an iFall activity. This wakes

up the application and attempts to get the user’s attention by

repeatedly vibrating, flashing LEDs and screen, and playing

an audio message. The app prompts the user with a simple

pop-up window telling them to press an on-screen button or

verbally state if they require help. A canceled alert closes

iFall and the interrupted activity is restored. This gives users

the opportunity to eliminate false positives [20], [8].

The iFall application has additional methods to reduce the

number of false positives. We allow the amplitude’s upper

threshold described in the ’Fall Detection’ section to be

variable. The application displays a small list of configuration
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options when the phone’s Menu key is pressed. One option

is to adjust the sensitivity, the capacity to detect a fall [17].

So the less sensitive, the higher the upper threshold is.

Dynamically raising the upper threshold allows the app or

user to adjust in the case where an excessive number of falls

are suspected. Given information such as age, weight, height,

and level of activity are also factored into the equation [15],

[26].

The other option under the application’s menu is Manage

Contacts. This allows the user to add social contacts to

his/her iFall, emergency contact list. Using social contacts

to confirm a fall before alerting an emergency service is

another method for filtering false positives. When a fall is

confirmed, every contact in the iFall emergency list is sent a

SMS message [18]. This message states a fall was detected,

the given time, GPS coordinates, and password. It also asks

the contact to text the fallee the given password. When

texted, an audio message is played on the fallee’s phone,

connection with the social contact is automatically made, and

the phone is placed on speaker. Enabling bidirectional voice

communication between the fallee and social contact greatly

reduces the number of false positives [20]. The dedicated

emergency services are only notified when a social contact

also confirms the fall, or in the case that no social contacts

text the fallee.

III. CHALLENGES

Using smart phone technology for fall detection has nu-

merous advantages in cost and capability of the system.

However, leveraging an existing system does pose challenges

that single use detectors can avoid. One advantage of using

a smart phone, is that the user is more likely to carry the

phone throughout the day since it is seen as indispensable in

daily living, whereas users may forget to wear special micro

sensors [27]. Unfortunately, it may be difficult to convince

users to mount the phone to various body parts in order

to improve fall detection rate [12]. Instead, the software

must dynamically adjust to different methods of carrying the

phone (e.g., in the purse, pants or shirt pocket, or on a belt or

neck clip). This requires the software to classify acceleration

parameters of general use to identify the correct parameters

for the fall detection logic.

To adapt for different carrying methods, we dynamically

adjust the upper threshold and starting position. If the phone

is carried on more accelerated body parts, such as the arms,

the level of activity is automatically risen. This causes the

upper threshold to be greater [12]. Likewise, more stationary

spots like the trunk will lower the threshold [3]. To account

for the different orientations in which the phone may be

held, such as vertically or horizontally, we dynamically

adjust the starting position. If the phone is resting for an

extended period of time with 1G acceleration, we designate

that to be the starting position. This allows the position

to be dynamically set as the user interacts with the phone

throughout the day.

Figure 2 graphs the walking/running activity. Running’s

amplitude can break the lower and upper threshold. If the

Fig. 2. Accelormeter readings while running. Crosses lower and upper
threshold while posture position remains upright.

Fig. 3. Accelormeter readings while sitting and standing. Posture position
changes while thresholds are not typically crossed.

Fig. 4. Accelermeter readings while violently picking up and setting down
the phone.

user suddenly stops, it can cause an extended period of 1G

acceleration. These events together suggest a fall. However,

a prompt will not be given because the phone’s starting and

ending positions are the same. Figure 3 graphs the sitting and

standing activity. This activity changes the phone’s position.

However, sitting and standing’s acceleration will not usually

break the upper threshold. Both experiments were performed

while the phone was in the user’s front pant’s pocket.

Certain interactions such as violently answering then end-

ing a call (see figure 4) or dropping the phone can break

the thresholds and change position. We chose not to refine

our algorithm to handle these cases for two reasons. First,

eliminating these cases may result in decreased accuracy of

detecting actual falls. Second, we are assuming that the user

wants an alert if the phone was accidentally dropped. The

user is given the option to cancel the alert and/or adjust the
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upper threshold if either case becomes too frequent.

IV. CONCLUSION

Our system provides a viable solution to increase fall

detection among people. Using existing, mass marketed tech-

nologies will limit cost making it available to the majority

of the public. Implementing proven fall detection algorithms

makes the system highly reliable. Reliability and reduced

number of false positives mean greater adoption by emer-

gency services. The importance of the cell phone in everyday

life decreases the chances of being forgotten. Everyday

interaction with the phone makes the interface more familiar

to the user. A cell phone is also less intrusive than dedicated

devices. The familiar interface, non-intrusiveness, and afford-

ability leads to less rejection from users. By combining cheap

hardware and open source software, we hope to provide

a realistic answer to reducing the long-lie period for the

elderly.

A. Future Work

Our current effort is to deploy these devices in the field.

We are working with medical and geriatric professionals

to create an interface that works well with the elderly.

Observing interactions will help refine the user interface, gain

real world power statistics , and mine sample data.

The flexibility of the Android platform along with the

phone’s hardware capability allows this system to be ex-

tended in numerous ways. Bluetooth support could allow

iFall to gather additional data readings from micro-sensors

embedded in articles of clothing [18]. Ideally, a sensor would

be embedded in head or eye wear due to the fact that the

head is the most reliable location for fall detection using

threshold based algorithms [12]. The system could also use

image support from mounted, bluetooth cameras as described

in [15], [23], and [16].

The system could also use the Wi-Fi connection to log

the data readings on a server. More sophisticated pattern

matching algorithms can be then be executed [27]. Efforts

are being made to build a database of common ADL readings

[20]. This information can be exploited in attempts to classify

what type of action the user is performing based on pattern

matching techniques.

Ideally, this system can be extended beyond geriatrics.

Vigorous activities such as running, biking, and extreme

sports all increase participants’ chances of falling. In ad-

dition, we would like to adapt our algorithm to detect when

the user is in a vehicle. By setting a high upper threshold,

along with GPS, we can then monitor if the user has been

in an accident.
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[20] G Pérolle, P Fraisse, M Mavros, and I Etxeberria. Automatic fall
detection and activity monitoring for elderly. Sponsored by the
CRAFT project.

[21] EW Peterson, CC Cho, and ML Finlayson. Fear of falling and
associated activity curtailment among middle aged and older adults
with multiple sclerosis. (13):1168–1175, 2007. Multiple Sclerosis.

[22] Mihail Popescu, Yun Li, Marjorie Skubic, and Marilyn Rantz. An
acoustic fall detector system that uses sound height information to
reduce the false alarm rate. 30th Annual International IEEE EMBS
Conference, August 2008.

[23] Caroline Rougier and Jean Meunier. Demo: Fall detection using 3d
head trajectory extracted from a single camera video sequence.

[24] K.E. Thomas, J.A. Stevens, K. Sarmiento, and M.M. Ward. Fall-related
traumatic brain injury deaths and hospitalizations among older adults
- united state, 2005. Journal of Saftey Research, (39):269–272, May
2008.

[25] Ran Wei and Ven-Hwei Lo. Staying connected while on the move.
8(1):53–72, 2006.

[26] G Williams, K Doughty, K Cameron, and D.A. Bradley. A smart
fall and activity monitor for telecare applications. volume 30, pages
1151–1154. Proceedings of the 20th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, 1998.

[27] Tong Zhang, Jue Wang, Ping Liu, and Jing Hou. Fall detection by
embedding an accelerometer in cellphone and using kfd algorithm.
IJCSNS International Journal of Computer Science and Network

Security, 6(10):277–284, October 2006.

6122


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

