
  

 

Abstract—Older adults experience increased sleep movement 

disorders and sleep fragmentation, and these are associated 

with serious health consequences such as falls. Monitoring sleep 

fragmentation and restlessness in older adults can reveal 

information about their daily and long-term health status. 

Long-term home monitoring is only realistic within the contact 

of unobtrusive, non-contact sensors.  

This paper presents exploratory work using the pressure 

sensor array as an instrument for rollover detection. The sensor 

output is used to calculate a center of gravity signal, from which 

five features are extracted. These features are used in a decision 

tree to classify detected movements in two categories; rollovers 

and other movements. Rollovers were detected with a sensitivity 

and specificity of 82% and 100% respectively, and a Mathew’s 

correlation coefficient of 0.86 when data from all sensor 

positions were included. Intrapositional and interpositional 

effects of movements on sensors placed throughout the bed are 

described. 

I. INTRODUCTION 

ervasive computing promises to improve healthcare 

“because of its ubiquitous and unobtrusive analytical, 

diagnostic, supportive, information and documentary 

functions” [1]. Smart homes are one of the many settings for 

older adults to benefit from pervasive computing [2]. The 

aim of smart homes is to support health, safety and 

independence of older adults by using technology to analyze 

acute events, everyday cognition, chronic disease 

management and long-term health and mobility [2], [3].  

Steele et al. documented older adult‟s preference for 

ambient rather than wearable sensors since the latter are 

related to problems of “remembrance, rebellion and 

obtrusiveness,” [2] in addition to perceived social stigma of 
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requiring a sensor which can further reduce adherence [3]. 

Older adults‟ desire to age in their homes creates the need to 

shift healthcare technologies from in-hospital monitoring and 

treatment to home-based prevention and monitoring of health 

status [2].  Unobtrusive sensors require no action from the 

patient, therefore are better suited for long-term use and to 

mitigate compliance challenges.  

II. SLEEP AND HEALTH IN OLDER ADULTS 

A. Sleep Disorders and Older Adults 

Even in healthy older adults, sleep changes with age. The 

older adult has shorter continuous sleep periods, takes a 

longer time falling asleep, and suffers from increasingly 

fragmented sleep [4]. Sleep breathing disorders such as 

obstructive sleep apnea are more frequent among older 

adults, especially men, and are related to hypertension, 

stroke and heart disease [5].  

There is also a change in the prevalence and type of body 

movements during the stages of sleep. In older adults, sleep 

movements are less defined by sleep stage and more likely to 

lead to an awakening. Periodic leg movements, which can 

cause frequent awakenings, also increase with age [5]. 

Rollovers are an important sleep movement because they 

indicate position changes. Positional sleeping has an effect 

on the severity of sleep breathing disorders such as apneas 

(both obstructive and central), snoring and Cheynes Stokes 

respiration [6]. Additionally rollovers do not occur during 

REM sleep and may be useful for sleep stage estimation [7]. 

B. Health Impact of Age-Related Sleep Changes 

The prevalence of many sleep disorders increases with 

age, but the symptoms are often attributed to medical illness 

or medication [5]. Pain, noise, nocturia, and comorbidities 

can also increase sleep fragmentation. The lack of sleep and 

increased sleep fragmentation has health and social 

consequences [5]. Falls have recently been associated with 

sleep disturbances, because poor sleep can lead to a 

difficulty sustaining attention, slower response times, 

impairments in memory and concentration [8].  

III. SLEEP ASSESSMENTS 

The gold standard for sleep assessments is 

polysomnography (PSG), a multimodal over-night analysis. 

In PSG, limb and body movements are monitored by 
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electromyography. The patient‟s body posture is also noted, 

usually by observation through an infrared camera. PSG is 

not compatible with long-term monitoring due to prohibitive 

costs, invasiveness and in-hospital location. 

A. Wearable Sensors 

In one study [7], rollover detection was performed in 

patients wearing a SenseWear Pro2 Armband. Thresholding 

the maximum and mean acceleration (in x and y-axis) 

identified posture differences “when the actigraph detected 

„sleep‟”; 82.4% (400 out of 475) of rollovers were detected.   

B. Non-Contact Sensors 

Unobtrusive sensors used for bed movement detection 

include pneumatic tubes placed under the sheet [9], load 

sensors under bedposts [10], [11], static charge sensitive bed 

[12], [13], and distributed resistive sensors [14].  

In another study [15], data was collected simultaneously 

by a pressure sensor array and a wrist worn actigraph. 

Thresholds on the pressure sensor‟s value for standard 

deviation and squared difference were used to map the 

movements detected by the actigraph to the unobtrusive 

sensor with 69.6% sensitivity  and 89.6% specificity (13.3% 

misclassification rate). Compliance problems with the use of 

the actigraph were reported for two of the ten study 

volunteers because of device positioning and device 

obtrusiveness [15].  

C. Sleep Diary 

A sleep diary can be used to record time in bed, 

approximate sleep onset and the number of awakenings, 

however long-term monitoring should avoid relying on self-

reports, especially in a smart home scenario because of the 

limited information, cognitive demand placed on the older 

adult, and time-consuming data entry required to analyse 

trends. Instead, unobtrusive and non-contact sensors can be 

used to reliably collect and store a broader range of 

information that can be analysed offline. 

IV. OBJECTIVES 

Unobtrusive pressure sensor arrays can detect movement 

onset times [16] and collect respiration rate information [17]. 

The research presented herein extends its application to 

identifying rollovers.  

The objectives of the research for this paper are to:  

1. Compare the classification properties of intrapositional 

and interpositional decision trees for rollover detection. 

2. Assess the effect of sensor number and position on 

movement classification and feature importance. 

V. METHODS 

A. Data Acquisition and Annotation 

A Tactex Controls Inc. Bed Occupancy Sensor was 

installed between a standard hospital 4-inch mattress and a 

75”x34” metal bed frame. One hospital pillow was placed at 

the head of the bed. The bottom plate of the bed is made of 

four metal sections to allow the bed to fold, though it 

remained in a flat position throughout these experiments. 

The bed sections measure 31”, 9”, 14” and 20”. The 9” 

section is wide enough for the Tactex sensor, but there is an 

on/off switch hindering its placement.  

Tests were conducted with the sensor in five positions as 

shown in fig. 1. A healthy volunteer performed a series of 

large movements (bed entry/exists, rollovers, sleep starts, 

posture shifts) and small movements (arm/leg twitches, 

gasps) with the sensor in each position.  
 

B. Data Annotation 

An observer noted the times of movement onset, and these 

values were used to manually annotate the data to identify 

body position, rollovers and other movements (bed entry and 

exit, arm, leg and other movements). 

C. Rollover Detection 

The center of gravity in the x direction (CoGx) was used 

to estimate the person‟s placement on the sensor array, which 

has 24 sensors arranged in 8 rows and 3 columns, and 

measures 30cm by 80 cm. Its sampling rate it 10 hertz. The 

CoGx signal was rounded to the nearest integer as shown in 

eq. (1) to identify a row of interest where x is the output of 

the pressure sensor on the i
th

 row and j
th

 column.  
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The features extracted from the sensor data for each 

recorded movement are listed in table I. MATLAB‟s 

(R2008b) decision tree classes were selected to build a 

classifier because their intuitive interpretation is appropriate 

for exploratory work and pruning can identify salient 

 

TABLE I EXTRACTED FEATURES FROM SENSOR OUTPUT FOR 

 EACH MOVEMENT 

Feature Description 

amplitude of the CoGx signal 

duration of CoGx fluctuations  

number of excursions in CoGx signal 

difference between final and initial CoGx position 

average value of moving variance (calculated in 10 

sample intervals) 

Amplitude 

Duration 

#. Excurs 

∆ 

Mvar 

 

 

 

75” 
  1     2    3                 4       5 

x 
y 

 
Fig. 1. Bed with pressure sensor placement 
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TABLE II ANNOTATED MOVEMENTS VS. PRESSURE SENSOR POSITION 

Movement Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 

Entry  

 Exit 

8 

7 

11  

10 

5 

5 

7 

7 

4 

3 

Rollover 15 14 10 10 11 

Leg(s) 0 0 0 6 1 

Arm(s) 0 1 5 0 0 

Whole body 

movement 

0 8 12 5 12 

 

Total 30 44 37 35 31 

 

 
Fig. 2. Sensor output and rounded CoGx for four position changes 

 
 

TABLE III INTRAPOSITIONAL RESULTS (PRUNED TREE)  

 Pos.1 Pos.2 Pos.3 Pos. 4 Pos. 5 Avg ±std 

Sen. 73.33 100 100 100 100 94.67±11.93 

Spe. 93.33 96.67 96.23 100 75 92.26±9.93 

MCC 0.68 0.95 0.94 1 0.72 0.86±0.15 

 
 

features [18]. Pruning the tree to find the smallest tree with 

an error within one standard deviation of the best 

classification tree‟s resubstitution error was investigated to 

measure the computational savings. Pruning balances 

“predictive accuracy and model complexity for applications 

where model interpretation is still desired” [18].  

 

For objective 1), a decision tree was generated for each 

position using stratified 10-fold cross-validation to assess 

intrapositional classification properties. An additional five 

trees were generated using the leave-one-out method; 

movements from four positions were used to train the tree 

and the movements form the left-out position was used for 

validation to assess interpositional classification. Finally, 

movements from all sensor positions were combined to build 

one general tree with stratified 10-fold cross-validation to 

produce generalized results.   

For objective 2), linear discrimination analysis measured 

the relative importance of features from the intrapositional 

decision trees.   

 

Matthew‟s correlation coefficient (MCC), shown in eq. 

(2), assessed the quality of the classifier since the classes in 

the dataset are unevenly distributed. MCC uses true positives 

(TP), true negatives (TN), false positives (FP), and false 

negatives (FN), to calculate a score [-1, 1], where +1 

represents a perfect prediction, 0 a random prediction and -1 

an inverse prediction. 

))()()((

**

FNTNFPTNFNTPFPTP

FNFPTNTP
MCC

  

(2) 

 

VI. RESULTS AND DISCUSSION 

A. Data 

In total 177 movements were recorded:  60 rollovers and 

117 other movements. Table II summarizes the results of the 

data collection and annotation of movements.  

B. Rollover Detection 

Fig. 2 shows the CoGx signal for four position changes. 

The beginning and end of each movement was identified and 

the features were extracted and used in a decision tree.  

The duration of rollovers in this study was 5.42 ± 4.36s, 

though it may be significantly longer for older adults who 

may require several attempts to change position. An 

increased number of attempts is expected to affect the 

number of fluctuations in the CoGx signal.  

Table III shows the intrapositional classification results 

sensitivity (Sen.), specificity (Spe.) and MCC, for each 

pruned tree built with single position sensor data. These 

results indicate that the ideal sensor position for rollover 

detection is position 4, though position 2 & 3 maintain good 

classification. Data from positions 1 & 5 may be better suited 

for head and leg movement detection respectively.  

Intrapositional decision trees built using only one sensor 

position differed from each other and from the generalized 

decision tree, suggesting that the importance of chosen 

features may vary with position. The results of table IV, 

which ranks the relative importance of features using linear 

discriminant analysis, suggest that feature importance also 

changes with sensor position. When the sensor is closer to 

the head or foot of the bed, other features may be required to 

provide the same classification rate as in centered positions.  

Table V show the results from the interpositional decision 

trees (leave one out approach). The position listed on the 

first row indicates which position‟s movements were left out 

of the training and used for validation. Interpositional tree 

results are inferior to intrapositional results, suggesting that 

movements are transferred to pressure sensors differently 

along the length of the bed.  Decreased sensitivity in the 

interpositional trees, compared to intrapositional and 

generalized trees support the finding that the effect of 

TABLE IV RELATIVE FEATURE IMPORTANCE  

Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 

∆ ∆ ∆ #. Excurs Duration 

Duration #. Excurs Amplitude ∆ ∆ 

#. Excurs Mvar #. Excurs Duration #. Excurs 

Amplitude Amplitude Mvar Amplitude Mvar 

Mvar Duration Duration Mvar Amplitude 
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movements on the CoGx signal and its features are location 

specific. The zero in the specificity row of table V was 

caused by the absence of true negatives in three of the trees; 

all movements were classified at rollovers. 

The generalized (random stratified 10-fold cross-

validation) pruned tree correctly classified 81.67% of 

rollovers (49 out of 60) and 100% of movements (117 out of 

117). The proportion of movements in the correct class was 

93.79%, which compares with other measures reported in the 

literature [7], [15] and its MCC is 0.86.  

An analysis of the misclassified cases revealed that the 

type of movement most likely to be misclassified was side-

to-side rocking. The features related to the repetitive nature 

of this movement can be studied and added to the features 

list to increase specificity in rollover detection.   

1) Study Limitations 

Limitations of this study include the number and types of 

non-rollover movements recorded, and using only one 

volunteer in a non-sleep situation. Future work will use data 

acquired from the sleep lab where many more movements, 

including posture shifts will be observed, and will help 

discern which features are relevant to rollover detection.  

VII. CONCLUSION 

The unobtrusive pressure sensor array can be part of a 

long-term monitoring strategy in smart homes and used to 

detect specific movements in bed and gain knowledge about 

sleep patterns.  

Decision trees applied to the pressure sensor data 

successfully identified most rollovers and differentiated 

between rollovers and other movement using features 

extracted from the CoGx signal. Interpositional effects of 

movements on sensors placed throughout the bed are 

reflected in lower values for interpositional results. The use 

of the pressure sensor array offers advantages compared to 

actigraphy and PSG in terms of cost and obtrusiveness and 

can be extended to identify further variables important to 

sleep assessments. 

Studies of interpositional classification properties and 

feature importance can provide useful information for 

outfitting smart homes where it is desirable to optimize the 

number of sensors (minimizing cost while maintaining 

detection properties). Since the general tree did not perform 

as well as individual trees, it may not be necessary to fully 

cover the bed in sensor arrays for optimal rollover detection. 

VIII. FUTURE WORK 

The decision tree approach for rollover detection has been 

supported with exploratory results. Further tests will use data 

obtained from the sleep lab and pressure sensor array 

simultaneously, and from multiple subjects to create a 

generalizable decision tree.  
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TABLE V INTERPOSITIONAL RESULTS (PRUNED TREE) 

 Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 Avg±std 

Sen. 59.01 31.82 27.03 28.57 26.95 37.69±13.79 

Spe. 75 0 0 0 20 47.5±38.89 
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