
 

Abstract—Today, eldercare demands a greater degree of 
versatility in healthcare. Automatic monitoring devices and 
sensors are under development to help senior citizens achieve 
greater autonomy, and, as situations arise, alert healthcare 
providers. In this paper, we study gait patterns based on 
extracted silhouettes from image sequences. Three features are 
investigated through two different image capture perspectives: 
shoulder level, spinal incline, and silhouette centroid. Through 
the evaluation of fourteen image sequences representing a 
range of healthy to frail gait styles, features are extracted and 
compared to validation results using a Vicon motion capture 
system. The results obtained show promise for future studies 
that can increase both the accuracy of feature extraction and 
pragmatism of machine monitoring for at-risk elders.  
 I. INTRODUCTION 
 Research regarding silhouette-based gait and activity 
recognition has been fruitful in recent years. One of the 
most recent projects is the HumanID Gait Challenge 
established by DARPA [1],[2]. The project is meant for 
identification of individuals solely based on their walking 
patterns. Many different approaches have been taken to 
tackle the problem of extracting distinctive gait features. 
Space of probability functions have been shown to 
distinguish people in video frames regardless of the viewing 
angle [1]. Hidden Markov Models (HMMs) have also been 
in development to distinguish activity patterns not just in 
walking, standing, and other normal postures, but also in 
abnormal activity situations such as opening doors [3]. The 
robust model (in)validation approach has been used to 
classify gaits, based on a family of nominal gaits [4]. Of 
course, modeling has its deficiencies in that it requires a set 
of training data that must encompass as much of the 
expected postures as possible. Shape analysis and feature 
extraction have also been done to extract gait information. 
Through silhouette images, the Kendall definition of shape 
has been applied to make individual identification. From 
viewing angles of less than 22.5 degrees, classification is 
able to achieve 85 percent accuracy [5].  

From a health care perspective, studies have been done 
to computationally detect the health problems in the aging 
subjects. Motion capture systems are used to accurately 
locate the specific anatomic parts involved in gait. 
Osteoarthritis has been studied using a six-camera Vicon 
motion capture system. Four reflective markers are placed 
around the knee joint to calculate angular acceleration and 
momentum [6]. In another study conducted by the Victoria 

University in Australia, a PEAK motion capture system is 
used. Unlike the 3-D Vicon, PEAK tracks reflective markers 
in 2-D image space. In this study, support vector machines 
are used to assess gait deterioration. Using the PEAK data 
from reflectors on legs and feet, minimum foot clearance is 
graphed and histograms have been shown to extract gait 
information [7]. 

Work has been done in using image silhouettes for 
activity recognition in the home environment. A bank of 
multiple HMMs has been used to model activities of daily 
living [8]. It has been shown that specific gait features can 
be extracted from silhouette data. Static information such as 
stride length and body height is complemented by kinematic 
information established by the angle of lower limb joints 
[9].  

Our research tries to further the investigation of gait 
feature extraction and evaluation. Few studies have been 
done to investigate the gait of people who suffer from 
various effects of aging using image silhouettes. From 
interviews with residents from the TigerPlace retirement 
community in Columbia, MO, many voice their concerns 
over falls. Research has been done on developing 
technology to promptly and accurately detect falls. 
Gyroscopes and accelerometers have been used for such a 
task [10]. However, subjects are required to wear such 
equipment in order for falls to be detected. The purpose of 
this project is to use the technology from previous gait 
identification studies to assess the problematic gaits of the 
elderly. We seek to identify deteriorating gaits early, 
therefore alerting healthcare providers to more closely 
monitor at-risk residents. 

The rest of the paper is organized as follows. Section II 
describes the methodology behind each of the three features 
extracted from the image sequences. In Section III, results 
obtained from the features are described with graphs 
presented. Finally, Section IV includes concluding words 
and possibilities for future work.  
 

II. METHODOLOGY 
 
The study began with an interest in trying to allow 

machines to make similar judgments as health care 
professionals when simply assessing the stability of the 
walks of individuals.  

The features considered for this study are derived from 
a panel of nurses, physicians, and physical therapists. The 
panel examined the walks of volunteer residents at Tiger 
Place and ranked their gait stability based on certain 
features. Three of the features they used have been deemed 
possible for automatic extraction: shoulder level, back 
hunch, and total body movement. In this paper, we present 
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Fig. 2. Silhouette centroid during a straight walk. The subject on the left 
has a noticeable limp. 

an investigation of these gait features. Although the work is 
motivated by gait data on elderly volunteers, in this 
preliminary work, we have collected data in the lab on 
healthy subjects and an experienced physical therapist who 
can demonstrate abnormal gait patterns. 

 

A. Shoulder Level 
The shoulder level of the subject is compared with the 

horizontal axis. The idea is to determine how much the 
subject sways from side to side by calculating the angle 
between his/her shoulder and the horizontal axis. Silhouette 
figures of the subjects are first extracted from each walking 
sequence. The main distribution vector of the silhouette in 
each frame is found through the eigenvector of the 
covariance matrix of the silhouette pixel coordinate matrix. 
The perpendicular vector to the distribution vector is 
assumed to be the shoulder level. 

Normally, only the upper body should be used to 
calculate a feature such as shoulder level. However, due to 
the foreshortening of the camera, the silhouettes produced in 
the frames where the subject is further away are usually 
poor in definition. To divide the silhouette into two halves 
would further ruin the results. Thus, the distribution vector 
represents the entire subject.  

In image space, sets of horizontal axes are defined to 
provide a comparison for the computed shoulder vectors. 
For the Fire-i cameras, the lensing effect sometimes distorts 
the true evaluation of the shoulder level of the subject. To 
solve this problem, a system of variable position axes is 
used. A presumably healthy subject walks through the lab 
environment where the data is collected. The shoulder level 
of the healthy subject is then manually extracted from the 
image frame at every location of the walk. This set of 
“healthy” shoulder levels is set as horizontal axes. When 
analyzing the test walks, the closest horizontal axis to the 
subject silhouette in image space is used for comparison. 
Treating both the horizontal axis and the calculated shoulder 
level as unit vectors, the angle between the variable 
horizontal axis and the calculated shoulder level is then 
found by taking the inverse cosine of the dot product 
between the two vectors.  

B. Spinal Incline 
Similar to the method used in shoulder level detection, 

the distribution vector of the silhouette in each frame is 
found. This vector represents the direction of lean of the 
silhouette; therefore, it works well in reflecting the general 
incline of the subject’s spine. Unlike the shoulder level 
detection method, the silhouette coordinate matrix used in 
calculating the spinal incline consists only of the pixels in 
the upper body of the subject. This is because in the profile 
view frames, the subject moves horizontally across the 
frame, thus retaining a good amount of pixel definition in 
the silhouettes. To separate the upper body from the rest of 
the silhouette, a box is mapped onto the silhouette based on 
the vertical and horizontal minimum and maximum of the 
extracted silhouette. The torso takes up roughly 52 percent 
of the height of the silhouette [11]. Thus, the box is divided 
according to this ratio. See Fig. 1. 

Again, due to lensing effect, another system of variable 
positioned vertical axes is used based on the spinal incline 
of a healthy subject. The angle between the vertical axis and 
the calculated spinal incline is found. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

C. Silhouette Centroid 
To track total body movement, we use the silhouette 

centroid. The strategy is to follow our subject through the 
walk, and determine the degree of oscillation around the 
straight path of walk. See Fig. 2.  

The centroid is found by averaging the coordinates of 
all the pixels in the silhouette. This method lessens the 
effect of background noise in the silhouette. To discern the 
degree of oscillation through the course of the walk, the 
least mean square error of the location of the silhouette 
centroid is calculated. 

 
III. RESULTS & VALIDATION 

 
The data are collected in two laboratories, one equipped 

with a seven camera VICON Motion Capture System, and 
one without. A total of fourteen image sequences are used to 
process these three features. Seven sequences are captured 

Fig.1. The blue box maps the size of the silhouette. The white 
portion represents the torso. The distribution vector (red) clearly 
deviates from the vertical axis (green).  
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from the full view perspective, and seven from the profile 
view. Unibrain Fire-i digital cameras are used in data 
capture as an example of the type of low cost equipment that 
could be implemented in practice. Sequences 100, 101, 103, 
and 104 are conducted by the same person, sequences 102 
and 105 are conducted by the same person, and sequences 
107 to 114 are conducted by the same person (a physical 
therapist who has extensive experience in eldercare and can 
mimic gait problems). See Table I for the description of 
each walk. 
 

TABLE I 

 
Each sequence contains one visible subject, which 

enables easy silhouette extraction using a Gaussian mixture 
model [12]. For the full view frames, the shoulder level and 
silhouette centroid are extracted. Shoulder level can only be 
seen clearly from the front, and the subject’s side-to-side 
oscillation is bettered viewed from the front as well. For the 
profile view frames, the spinal incline is extracted. Because 
the eigenvectors calculated from the silhouettes depend 
strongly on the quality of the silhouettes, sometimes, usually 
due to the foreshortening of the camera, the silhouette is 
poor in quality and leads to inaccurate calculations. To 
account for these outliers, the median of the shoulder and 
back angles are found to represent the central tendency of 
the feature.  

The validation for the features calculated is done 
through two different methods. For sequences numbered 
107 to 114, the capture environment contains a seven-
camera 3-D VICON Motion Capture System, which we 
used to validate the same set of features as the silhouette-
based algorithms. Six reflective markers are placed on the 
subject during these eight sequences: one on each shoulder, 
two along the spine (at Cervical 7 and Thoracic 12), and one 
on each knee. A set of horizontal and vertical axes has been 
defined in the capture volume. The shoulder vector is 
determined by the position of the two markers on the 
shoulders, and the spinal incline is determined by the two 
markers along the spine. The body centroid is calculated by 
taking the average of the coordinates of the six markers.  

For sequences numbered 100 to 105, the VICON 
system is not available in the capture environment. Thus, the 
validation is done manually. In each image frame, thirteen 
joints are picked from the subject. The joints are located as 
such: one on each shoulder, one on each elbow, one on each 

hand, one on the back of the neck (at Cervical 1), one on the 
middle of the back (at Intervertebral Disc), one on the lower 
back (at Lumbar 5), one on each knee,and one on each foot. 
Because this method of validation is also affected by the 
lensing effect, variable position axes are used here as well. 
The shoulder vector is determined by the two shoulder 
joints, the spinal incline is determined by Cervical 1 and 
Lumbar 5, and the body centroid is the average of the 
coordinates of the thirteen joints. The experimental results 
and validation are shown in Tables II, III, and IV.  

 
 

TABLE II 
SHOULDER LEVEL 

 
TABLE III 

SPINAL INCLINE 

 
 

TABLE IV 
SILHOUETTE CENTROID 

 
 
In Table II, the variance of the shoulder level is 

calculated instead of central tendency statistics because it 
reflects not only how much the subject is leaning to one side 
but also how much the subject sways from side to side. The 
numerical results from this feature are not reflective of the 

Sequence ID # Walk Pattern Description 
100 Limping (full view) 
103 Limping (profile view) 
101 Healthy (full view) 
104 Healthy (profile view) 
102 Limping (full view) 
105 Limping (profile view) 
107 Healthy (full view) 
108 Healthy (profile view) 
109 Mimicked aging (full view) 
110 Mimicked aging (profile view) 
111 Mimicked limping (full view) 
112 Mimicked limping (profile view) 
113 Mimicked Parkinson’s Disease (full view) 
114 Mimicked Parkinson’s Disease (profile view) 

Sequence 
ID # 

Description Silhouette 
Centroid 

LMS 
Error 

(pixel) 

Validation 
Centroid 

LMS Error 
(pixel) 

Validation 
Centroid 

Orthogonal 
Distance 
(unit in 

space) [13] 
100 Limping 4376 5543 -- 
101 Healthy 565 915 -- 
102 Limping 4520 5652 -- 
107 Healthy 1354 -- 2160 
109 Aging 1540 -- 2420 
111 Limping 916 -- 1970 
113 Parkinson’s 

Disease 
203 -- 1660 

Sequence 
ID # 

Description Shoulder Level 
Horizontal Angle 

Variance 
(silhouette model) 

Shoulder Level 
Horizontal Angle 

Variance  
(validation model) 

100 Limping 11.88° 0.02° 
101 Healthy 11.335° 0.003° 
102 Limping 4.83° 0.003° 
107 Healthy 7.04° 16.74° 
109 Aging 5.04° 13.15° 
111 Limping 4.19° 7.17° 
113 Parkinson’s 

Disease 
8.86° 8.15° 

Sequence 
ID # 

Description Spinal Incline 
Vertical Angle 

Median  
(silhouette model) 

Spinal Incline 
Vertical Angle  

Median  
(validation model) 

103 Limping 14.83° 7.96° 
104 Healthy 4.05° 0.57° 
105 Limping 18.09° 17.67° 
108 Healthy 3.09° 3.45° 
110 Aging 7.32° 6.88° 
112 Limping 7.00° 6.62° 
114 Parkinson’s 

Disease 
19.21° 20.67° 
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quality of the subject’s walk. Spinal incline results, 
however, show more promise. The limping, aging, and 
Parkinson’s disease sequences all demonstrate more 
deviation from the vertical axis than the healthy sequences. 
This finding through silhouette analysis is confirmed by the 
validation model. In fact, the experimental value error for 
the spinal incline angle is only 7.45%. Silhouette centroid 
tracking yields equally promising results. From Table IV, 
we see that limping and aging subjects’ centroids show the 
highest degree of oscillation around the line of best fit. The 
only exception appears in sequence 111, where both the 
silhouette centroid LMS error and its validation centroid 
orthogonal distance are lower than those of the healthy 
sequence 107. However, the general trend provides a 
measure to distinguish, to a certain degree, healthy subjects 
from those with health problems. Subjects with too much 
oscillation from side to side likely have instability in their 
legs, causing them to sway from side to side. A person 
walking with too little side-to-side oscillation likely suffers 
from Parkinson’s disease, which symptoms include rigid 
body posture, causing the patient to proceed in a hopping 
fashion down a straight line [14]. The values obtained here 
are for comparative purposes, with the healthy subjects 
setting the standard. With more data, a set of thresholds may 
be developed that will automatically classify a subject into a 
particular category based on his/her silhouette centroid 
oscillations.  
 

IV. FUTURE WORK 
 

The features reported here are still in the developmental 
stage. These initial experimental results show that it is 
possible to automatically extract these features based solely 
on the image frames of subjects and the results obtained are 
promising. Further trials need to be conducted on actual 
patients of problem gaits. Then, we will be able to establish 
specific models and threshold values in each feature that 
will enable the system to automatically separate the subjects 
into categories of healthy, limping, Parkinson’s disease, etc. 
It is important to realize, however, some limitations to these 
features reside in the fact that the silhouettes extracted from 
these sequences use a method that places greater emphasis 
on speed rather than the intricacies of post processing. 
Therefore, background noise could have affected the results, 
especially in the frames where foreshortening causes the 
subject to appear very small. With better silhouettes, we 
may be able to refine these calculations and extract more 
detailed features such as step size and bend at the knee to 
build a more complete profile for the subjects.  

The ultimate goal is to install inexpensive cameras, 
such as the Unibrain, in the homes of elderly residents. 
Using the silhouettes extracted from the images captured, an 
automated and noninvasive system can then identify 
residents with developing gait problems and alert the 
healthcare providers early to more closely monitor these 
residents to prevent them from falling.  
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