

Abstract— When dealing with a real time sensor network,

building test data with a known ground truth is a tedious and

cumbersome task. In order to quickly build test data for such a

network, a simulation solution is a viable option. Simulation

environments have a close relationship with computer game

environments, and therefore there is much to be learned from

game engine design. In this paper, we present our vision for a

simulated in-home sensor network and describe ongoing work

on using elements of game engines for building the simulator.

Validation results are included to show agreement on motion

sensor simulation with the physical environment.

I. INTRODUCTION

E are using sensor networks to evaluate the daily and

long-term behavior of people living in eldercare. This

is done via a unique collaboration between a privately

owned independent living complex and the University of

Missouri [1]. This relationship allows research to utilize the
facilities of this complex to develop systems for “aging in

place”, the idea that seniors can live independently with the

aid of non-intrusive monitoring technology. Several

apartments in this complex have been set up with wireless

sensor networks either for testing or collecting data on

voluntary participants. Using these systems, we are looking

for methods of early illness detection and adverse event

recognition. These systems range from monitoring activity

level through motion sensors [2] to detecting falls using

silhouetted video capture [3].

Up to this point, in order to generate test data we have
installed one or more networks in residential apartments then

either had real residents live with a sensor network for a

period of time, or acted out specialized tests ourselves to

acquire data with a known ground truth. This is a slow and

sometimes cumbersome task and is not suitable for

recreating sensor data with a specified condition over long

periods of time (e.g., several months).

To address this problem, we are developing a sensor

network simulator. Several simulator solutions exist in this

realm, including wireless topology simulators [4], full 3D

animation environments [5], and simulators for robots [8].

However, none of the existing simulation systems address
our vision of a simulator for an in-home sensor network.

Manuscript received April 7, 2009. This work was supported in part by

the National Science Foundation Grant IIS-0428420.

C. Godsey is with the Computer Science Department, University of

Missouri, Columbia, MO 65211. M. Skubic is with the Electrical and

Computer Engineering Department, University of Missouri, Columbia, MO

65211.

Our vision includes a simulation environment capable of

performing the same tasks as our most common sensors.

The output of this simulated network must match the output
of our real network. It must be easy to switch out room

layouts and change sensors for positioning and adaptations.

The simulator should include support for multiple input

types, such as direct input via keyboard, translation from real

networks, and output from a behavior generation system

which supports the generation of long term sensor data for

specified behavioral conditions and/or changes.

Our needs require a system providing a complete

workflow for establishing behavior scenarios through

simulating behavior in a passive sensor network on to a

custom logging system. Most solutions available only cover

a portion of this workflow and may or may not lend
themselves to integration within a larger system. Some

studies have been done with game environments in

evaluating flexible architectures for use in general

simulation [6]. The wide variety of techniques used in game

engine architectures allows for high customization of a real-

time environment. It is with this notion that we are pursuing

the development of a simulator with elements of game

design in mind.

II. THE PHYSICAL NETWORK

The current version of our sensor network is detailed in

Figure 1 [9]. It is composed of a data logger that keeps track

of the passive sensors, an event-driven video network (in

development, not currently installed), and a reasoning engine

to fuse sensor and video data to analyze patterns of activity.

There are currently 20 apartments with this network

installed at TigerPlace (without the video sensor network).

They are equipped with motion sensors, a bed sensor, and a

stove temperature sensor. The motion sensors are used for

room activity and for specific areas such as the shower,
kitchen drawers, refrigerator, and laundry closet. The

sensors meant for specific areas are placed in ways to limit

their view, such as being placed on the ceiling looking

directly down on the shower. The bed sensor is a pneumatic

strip that captures presence in bed along with qualitative

pulse, respiration and bed restlessness information [7].

The portions of this network that we are concerned with

initially in the simulator are the passive motion sensors and

the data logger. The logger collects output from the sensors

and records these events with a date and time into a

database.

Using Elements of Game Engine Architecture to Simulate Sensor

Networks for ElderCare

Chad Godsey and Marjorie Skubic, Member, IEEE

W

6143

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE

Fig 1. Organization of the sensor network used in TigerPlace. Here, we describe the simulation of the motion sensors.

III. SIMULATOR DESIGN

A. Intended Uses

We envision a sensor network simulator that facilitates

research through multiple functions. The following

discussion lists several scenarios in which the simulator will

be used.
For small specific testing, the simulator should handle

real-time interactive input, e.g. driving a simulated resident

through the environment using keyboard strokes. With this,

researchers can collect sensor data on specific activities,

such as walking through the apartment from the front door to

the bedroom. To further aid this use, the simulator should

record input to replay at a later time. This means that a user

can perform some actions and then have those actions replay

over and over to collect more data on them.

For complex behavior or long term behavior, a higher

level function is required. This new functionality should be
able to take in a high level linguistic summary of behavior

with changes over time and then build trajectories using this

behavior, which the simulator can use. These behaviors will

include, but not be limited to: daily routines such as time

waking up, using the bathroom, preparing meals, eating,

watching TV, reading, leaving the apartment as well as

lifestyle patterns showing signs of depression (e.g. more

sleep and limited activity during the day) or cognitive

decline (e.g. wandering or pacing).

The output of the physical sensor network consists of

database entries corresponding to a particular sensor with a

time of fire. However, the database entries carry little to no
context. They can only tell us what room activity took place

and when. To better understand this output, a graphical

representation of a person walking around the apartment

would provide more context. By re-mapping these entries

back into a spatial representation of the apartment, we can

build a trajectory list to emulate a person’s movement

around the apartment. Visualizing this movement in the

simulator can give care providers an idea of what the

resident has been doing in order to better understand their

state of health. Such a visualization would also aid

researchers in developing algorithms to automatically
analyze unusual patterns of activity.

The room layout functionality of the simulator will also

facilitate preliminary testing of sensor configurations in the

apartments before actual installation. By placing the motion

sensors in the simulator on a particular floor plan, we can

see the coverage area. This will allow analysis of overlap

and dead zones, which can lead to poor data collection.

Coupled with the ability to simulate complex behaviors,

initial tests may be run to ensure that a sensor configuration
is adequate to capture long term behavior patterns.

B. Design Overview

Figure 2 shows the generalized connectivity of our

proposed solution. Currently, we are focusing on the

simulation portion; behavior generation will be included in
future work. The interactive portion of the simulator is

being built using C++ with two open-source game

development libraries; Gosu (platform independent

rendering and input polling) and box2D (2D rigid body

physics) among other libraries for data serialization and

storage. It incorporates several techniques and components

common in game engines. For flow control, there is the

game loop, which is a timed loop that allows control of

simulation speed. For interactive movement, a physics

system is used. The physics system handles collision

detection and response for movements such as running into

walls and various other spatial calculations. The simulation
is also data-driven using text based configuration files.

These configuration files tell the simulator what objects to

simulate and how.

C. Game Loop (Control)

The interactive simulator relies on a timed loop. This loop

is run 60 times per second through monitoring. It controls all
the logic and rendering functions. By handling the loop in

this way, the simulation can be run on any modern CPU

without having speed-up or speed-down issues. This

separation between real time and simulation time also allows

us to simulate faster or slower than real time to either build

more data (faster), or view the simulation in detail.

The control schema of the loop is listed below:

 Collect input

 Step the physics simulation with time passed

6144

 Update all simulation objects with input and time

passed

 Render all simulation objects (if needed)

This method keeps all objects synchronized to the same

timeframe and ensures that during any drawing operation, all

objects are up to date. The parameterization of time passed
allows the simulation to run in real-time, fast time or even

slow time. In this way, the simulation can be used

interactively, for generating large amounts of sensor data in

a short amount of time, or for deep analysis of specific

actions.

Fig 2. Data flow for simulator and behavior generation systems.

D. Physics (Interactivity)

The simulator uses rigid body physics. This means that it

is intended to simulate Newtonian physics on rigid, convex

hulls and assumes no intra-object movement. For the

interactive portion of the simulator, this is used to handle
collision detection and response for the agent’s movement.

In all cases it is used for ray intersection tests to determine

object penetration of a motion sensor’s field of view.

The primary motion sensor used in our apartments is a

passive infrared (PIR) sensor that detects movement of

thermal bodies. These sensors have a conical view area with

a slightly higher resolution in the central vision over

peripheral vision. We have found them to have view angles

of 145° on the horizontal axis and 50° on the vertical axis.

They fire in a timed fashion; an initial fire will occur 1-2

seconds after detecting movement and thereafter every 6-8

seconds where motion is still detected.
Simulating this device’s behavior can be done in several

ways. The method used here works under the assumption

that all moving objects in the scene are thermal and are large

enough to trigger the sensor when moving. On each update,

a simulated sensor will shoot out a number of rays inside its

view cone. These rays will return their length which will be

shorter if they intersect some object. When this length

changes, the sensor will enter the active state and fire.

Figure 3 shows the visual representation used in the

simulator, where the lines indicate rays cast to test for

intersection of objects in the scene. While active, the sensor

will continue to fire every 6-8 seconds as long as motion is
detected. This is done though a counter utilizing the game

loop that chooses a random number between six and eight to

wait until the next fire time.

Some PIR sensors are placed on the ceiling pointed

straight down to focus on a specific area. For these, the

simulator establishes a rectangular area that when intersected

will enter the active state. These areas are separate from any

collision response code so they do not interfere with

movement.

Fig 3. Graphical representation of a PIR motion sensor with test

rays to detect motion. The distribution of the rays is concentrated
for central view and sparse for peripheral view.

E. Text Configuration (Data)

To provide data to the simulation, a standard format should

be chosen. This format must be able to represent common

types of data, including text, numbers, lists, and named

groups. There are several formats for text representation of

data. A few examples are XML [10], JSON [11] and YAML
[12]. For this simulator, JSON was chosen for its balance in

readability and simplicity in data representation.

The use of text files for configuration delays data

dependency until runtime instead of during compilation.

This provides a standard way to pass data between systems

and gives users control over how the simulation runs. The

configuration scheme used for the simulator is a two level

hierarchy. At the top, there is a file reference hardcoded in

the simulator wherein the next level of configurations are

linked. The three JSON files below this level provide detail

on the environment layout, metadata for the database, and
information on the person to be simulated. Each of these

can be modified by separate tools, which are planned for

development at a later time.

IV. SIMULATOR EVALUATION

Currently, the simulator has the core functionality for its

three types of input. It will accept interactive input via a

keyboard, record and play back this input, and also read a

path description file then act out that path within the
environment. Alongside each of these input types, the

6145

simulator has the aforementioned implementation for PIR

sensor simulation.

To test the system, we conducted several activity

exercises within one of the apartments using the installed

network, then translated that movement into our path

description format. This activity was designed to establish
patterns of firing for different speeds and distances from the

sensors. One person walked perpendicular to a single PIR

sensor at distances of five and ten feet in 5 minute bursts.

The speeds used were about half normal walking speed,

normal walking speed and double normal walking speed

(roughly 0.5, 1, and 2 meters per second).

 As the real data involves many variables that are not yet

implemented or tuned within the simulator (e.g. sensor

inaccuracies, lost or corrupted signals and other noise) we

wish to establish two things about the sensor output of the

simulator; first is that the simulator output resembles the

output of the real network within reason, and second is that
when removing all variables the simulator will produce

consistent results with itself invariant of simulation speed.

Fig. 4. Firings comparison between real data and simulation. Red
is simulator output and blue is real data.

Our results for evaluating the first concern were fairly

good. Once the simulated path matched the real path we

found that the agreement in number of sensor firings per

activity was around 93% (difference of 16 in 230 total

firings). Figure 4 shows the results where portion A denotes

the slow walking pace, B average, and C fast pace activities.

To address the second concern, we ran the simulator

without any randomness at several speeds; five times, ten
times, fifty times, and one hundred times normal speed. We

found a one-to-one agreement in output between normal

speed, five and ten times normal speed. For the fifty and

one hundred times speed we found some disagreement

dependent on the walking pace. For the slow pace the high

simulation speeds lost one firing and for the fast pace two

firings were gained on average. This seems to indicate that

the simulator loses data when run at such speeds. Some of

this data is regained when running the simulator at a faster

update interval.

V. CONCLUSION AND FUTURE WORK

A complete system for simulation and behavior generation

is needed to aid our long-term research with enabling

independent living for seniors. This system will take ideas

and designs from several sources including robotics and

game design. We are currently finishing the implementation

of the simulation portion. In designing the behavior

generation processes, we intend to enable end-user control

through a high-level scripting language allowing a multitude

of behavioral designs including reactive [13] and hybrid [14]

robot architectures.

ACKNOWLEDGMENT

The authors would like to thank Julian Raschke for

developing the minimalist game framework Gosu, Erin

Catto for the rigid physics library Box2D, and the MU

Eldertech research team for contribution and support.

REFERENCES

[1] Rantz M, Aud M, Alexander G, Oliver D, Minner D, Skubic, M,

Keller J, He Z, Popescu M, Demiris G, and Miller S, "Tiger Place: An

Innovative Educational and Research Environment," AAAI in

Eldercare: New Solutions to Old Problems, Washington DC,

November 7-9, 2008.

[2] Wang S and Skubic M, "Density Map Visualization from Motion

Sensors for Monitoring Activity Level," Proc. of the IET Intl. Conf. on

Intelligent Environments, Seattle, Washington, 2008, pp. 64-71.

[3] Anderson D, Luke RH, Skubic M, Keller JM, Rantz M, and Aud

M, "Evaluation of a Video Based Fall Recognition System for Elders

Using Voxel Space," Proc. of the Intl. Conf. of the Intl. Society for

Gerontechnology, Pisa, Tuscany, Italy, June 4-6, 2008.

[4] Park, S., Savvides, A., and Srivastava, M. B. “Simulating networks of

wireless sensors,” In Proc. of the 33nd Conf. on Winter Simulation,

Washington, DC, 2001, pp. 1330-1338.

[5] Zimmerlin, T., Stanley, J., and Stone, W. “A sensor simulation and

animation system,” In Proc. of the 5th Annual Conf. on Computer

Graphics and Interactive Techniques. SIGGRAPH '78. ACM, New

York, NY, 1978, pp. 105-110.

[6] Brandherm, B., Ullrich, S., and Prendinger, H. “Simulation of sensor-

based tracking in Second Life,” In Proc. of the 7th Intl. Joint Conf. on

Autonomous Agents and Multiagent Systems: Demo Papers, Estoril,

Portugal, May 12 - 16, 2008, pp. 1689-1690.

[7] D. Mack, M. Alwan, B. Turner, P. Suratt, R. Felder. “A Passive and

Portable System for Monitoring Heart Rate and Detecting Sleep

Apnea and Arousals: Preliminary Validation,” Proc. Transdisciplinary

Conf. on Distributed Diagnosis and Home Healthcare (DH2), April,

2006, Arlington, VA.

[8] R. T. Vaughan. "Stage: A Multiple Robot Simulator". Technical

Report IRIS-00-394, Institute for Robotics and Intelligent Systems,

School of Engineering, University of Southern California, 2000.

[9] M. Skubic, G. Alexander, M. Popescu, M. Rantz, and J. Keller, "A

Smart Home Application to Eldercare: Current Status and Lessons

Learned," Technology and Health Care, in press.

[10] J. Boyer, IBM (formerly PureEdge Solutions Inc.) Version 1.0, Glenn

Marcy, IBM 2008. Canonical XML Version 1.1.

http://www.w3.org/TR/xml-c14n11/

[11] The Internet Society, 2006, The application/json Media Type for

JavaScript Object Notation (JSON), http://tools.ietf.org/html/rfc4627

[12] Oren Ben-Kiki, Clark Evans, Ingy döt Net, 2008,

YAML Ain’t Markup Language (YAML™) Version 1.2,

http://yaml.org/spec/1.2/

[13] R. Brooks, “A robust layered control system for a mobile robot”,

IEEE J. of Robotics and Automation, vol. 2, no. 1, pp. 14- 23, 1986.

[14] R. C. Arkin, “Motor schema based mobile robot navigation,” Intl. J. of

Robotics Research, vol. 8, no. 4, pp. 92-112, 1989.

6146

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

