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Abstract— In recent years, the monitoring of sitting postures
was discovered to be a promising measure of healthy sitting
behavior, comfort, physical wellness and emotions. Most state-
of-the-art systems for monitoring sitting behavior are based on
supervised methods that are limited to a fixed set of classes. We
present a method that does not rely on training but distinguishes
between different postures autonomously.

We designed and implemented a system to monitor sitting
behavior in an unsupervised manner. Based on the pressure dis-
tribution acquired from a pressure mat we generate prototypes
of sitting postures. The prototypes are stored in a database
and serve as reference for comparing and classifying incoming
pressure data. The system relies on only a few, interpretable
system parameters and performs in real-time.

We conducted an experiment with a collective of 8 subjects
and recorded the data of 16 different postures for each subject.
Our proposed method generates on average 15.57 prototypes
of postures. This reflects well the 16 postures that actually
occurred in the experiment. In 91% of all cases an unambiguous
assignment of a posture to exactly one generated prototype was
achieved. On the other hand an unambiguous assignment of a
prototype to a posture was obtained in 86%.

Keywords: unsupervised monitoring, posture recognition,
prototype database, database matching

I. INTRODUCTION

The third European Working Conditions Survey identified
the most common work-related health problem as backache
reported by 33% of respondents [1]. As a consequence the
absence from work or even permanent disabilities result in
high economic costs [2]. According to [3], fixed postures and
prolonged sitting are risk factors for developing lower back
pain. Furthermore, any prolonged posture will lead to static
loading of the soft tissues and discomfort. As a prevention
strategy fixed postures should be avoided. Motivated by these
findings, researchers from different disciplines are working
on the automatic monitoring of sitting postures to support
healthy sitting behavior.

Nowadays, commercial pressure mats allow for continuous
unobtrusive sensing of the pressure distribution on a chair.
and a wide range of methods for the automatic detection of
sitting postures was developed. In most of these methods
pressure data from different postures and users is collected
in a first step. In a second step the recorded pressure data
is preprocessed, meaningful features are extracted and a
supervised classifier is trained to automatically detect the
sitting postures under investigation. These supervised classi-
fiers require labeled training data as opposed to unsupervised
classifiers. Thus, most state-of-the-art systems are limited to
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a fixed set of postures that must be specified in advance
during the training phase. In contrast, we present an unsu-
pervised approach for monitoring sitting behavior that does
not rely on a fixed set of postures but distinguishes between
different postures autonomously. A temporal distribution of
the detected postures can be derived to identify prolonged
static postures and provide a risk assessment of the subject’s
sitting behavior. Supervised approaches can be beneficial if
unhealthy sitting postures are known in advance. The core of
our method is a frame-by-frame comparison of pressure data
with posture prototypes stored in an autonomously created
database. The system relies on only a few, interpretable
parameters and performs in real-time.

In section II we present related work on monitoring sitting
behavior and prototype databases. In section III we present
our method in detail. Section IV contains the description
of the performed experiment and in section V we present
the achieved results. Finally, we draw conclusions, discuss
our results and provide an outlook on our future work in
section VI.

II. RELATED WORK

A. Pressure sensing for posture recognition

A wide range of methods exists for automatically detecting
postures. Pressure sensor mats have been used to detect sit-
ting postures in a chair [4]–[7]. Pressure mats have also been
employed to identify a driver in a car [8], to evaluate a car
driver’s behavior [9], [10], to measure driver’s fatigue based
on postural changes [11] and as a measure for comfort [12]
and physical wellness [13]. In recent work, the authors of
this paper have shown that nervous subjects exhibit higher
variance of movements under mental stress and that a person-
independent discrimination of stress from cognitive load is
feasible when using only pressure data [14].

B. Prototype database

The unsupervised database approach presented in this
paper is related to the family of Adaptive Resonance The-
ory (ART) algorithms [15]. This approach adapts prototypes
continuously when instances appear in a defined neighbor-
hood. Therefore, this method is well suited to problems
with an evolving database. However, in our application, we
need the prototypes to remain fixed to allow a consistent
interpretation of recognized postures over time.

III. METHODS

A. System description

The overall system architecture of our method is illustrated
in Fig. 1. In the first step the current pressure distribution on
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Fig. 1. Overall system architecture: in the first step the current pressure
distribution on the seat is acquired from a pressure mat. In the second step
the pressure frame is compared to prototypes stored in a database. If a
similar prototype is available, this prototype is assigned as class label to the
current frame. If there is no similar prototype available, the current pressure
frame is added to the initially empty database.

the seat is acquired from a pressure mat. In the second step
the pressure frame is compared to prototypes of postures
stored in a database. If a similar prototype is available, this
prototype is assigned as the class label to the current frame.
If there is no similar prototype available, the frame is added
to the initially empty database as a prototype representing
a steady-state posture as described in section III-A.2. In the
following, the two system components are described in more
detail.

1) Data acquisition: Input data is acquired from a com-
mercially available pressure mat from Tekscan [16]. Each
sampled frame comprises pressure data of 1024 sensor
elements arranged in a grid. The sampling rate was set to
25 Hz. A frame can be interpreted as an image, illustrating
the current pressure distribution. Examples are shown in
Fig. 2. The sum over all pixels is normalized to one for
each frame.

2) Database matching: The initially empty database is
filled with posture prototypes representing the different pos-
tures occurring during the measurement session. The current
pressure frame is compared to the prototypes in the database
and the nearest posture prototype (NPP) is determined. We
take the sum of absolute difference (SAD) between the
current frame and the prototypes as the similarity measure.
The index of the NPP in the database is assigned as the class
label to the current frame. A new prototype is added to the
database if it meets the following two conditions:

• The posture is unknown: a posture is considered as
unknown if it is not similar to any existing prototype
in the database. The current frame is first compared
to each prototype stored in the database based on the
SAD and is considered as a new posture prototype if
the difference exceeds a threshold Tmean. The threshold
Tmean allows control of the database’s granularity:
a higher Tmean means that fewer prototypes will be
generated and the database will be coarser, consisting
of only very different prototypes.

• The posture is in a steady-state: since we are interested
in taking “snapshots” of representative postures into the

database, we have to ensure that the new posture is in
a steady-state. We consider a new posture as steady-
state if the variance of the similarity measure mentioned
above is below a threshold Tvar.

Postures emerging from translation or rotation are handled
as different prototypes if they meet the above criteria.

B. Adjustment of system parameters Tmean and Tvar

As mentioned above, a new prototype is added to the
database if the posture is unknown and in a steady-state.
These two conditions are controlled by the two parameters
Tmean and Tvar.

We have evaluated the influence of the two parameters in
a systematic way based on the data recorded for a single
subject. The similarity measure and its variance were used
to find reasonable values for Tmean and Tvar. In a first
step a prototype is stored in the database representing a
certain posture. Next, the remaining pressure frames of the
same posture are presented to the system and the similarity
measure to the prototype is calculated. This procedure is
repeated for all postures. The mean and the variance of the
similarity measure are then used to determine reasonable
values for Tmean and Tvar.

Using data of subject 1 exclusively, we obtained 0.16 for
the mean and 0.00033 for the variance of the similarity
measure on a window of length W = 3 s. Note, that the
similarity between frames of an identical posture is not
perfect due to small movements of the subject as well as
noise from the sensor elements. To specify Tmean we added
three times the standard deviation to the mean calculated
above to account for 99.7% of the occurring values. As a
result of visual inspection we found that taking twice this
value results in a more stable classification. In the following,
all results are based on these settings presented in Table I.

IV. POSTURE EXPERIMENT

A posture experiment has been conducted to characterize
the classification performance of the system. The pressure
mat described in section III-A.1 was calibrated in the range
of 0 to 3.3 N/cm2 with the calibration system from Tekscan
and was mounted on a wooden swivel chair with a flat
surface. The sampling rate was set to 25 Hz. The height
of the chair was adapted to the length of the legs of the
subjects so that their heels were just touching the floor when
sitting upright.

The experiment was conducted with 8 subjects (5 male,
3 female, age 25–58). For each subject 16 static postures
including transition phases have been measured and labeled.
Examples of patterns for the postures measured by the

TABLE I
DESCRIPTION AND VALUES OF THE MAIN SYSTEM PARAMETERS.

Parameter Value Description

Tmean 0.44 Threshold for detecting unknown postures
Tvar 0.00033 Threshold for detecting steady-state postures
W 3 Window length in seconds
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pressure mat are depicted in Fig. 2. The dataset also contains
very similar postures, e.g. posture 4 and 5. Each posture was
maintained by the subject for 30 s. To define the transitions
between the postures a default posture was included between
each succeeding posture. In the default posture the subjects
were sitting upright and maintained the position for 5 s. In
total about 4 h of data was recorded during the experiment.

V. RESULTS

In Fig. 3 we provide as an example the classification re-
sults for subject 7. The results for the remaining subjects look
similar. Each of the 16 ground truth classes is represented
by a colored bar. E.g., in the beginning the ground truth
class changes from 1 to 2, separated by a transition phase.
The classification result is given by the curve showing the
prototype assigned by the unsupervised system over time.
The overall time frame shown covers 13 minutes.

In the optimal case, all frames of a certain ground truth
class would be assigned to one prototype and each prototype
would be assigned to one class. However, in practice frames
of a certain ground truth class can be assigned to different
prototypes. On the other hand, a prototype can serve for
several ground truth classes. The latter deviation from the
ground truth indicates that two ground truth classes are
very similar and should be grouped. Following our example,
postures 6 and 8 are both assigned to prototype 5 as it is
observable in Fig. 3. Comparing postures 6 and 8 in Fig. 2
reveals that they are indeed similar.

We computed the matching matrices also known as con-
fusion matrices in supervised learning for the subjects 2–8
to quantify the overall performance in mapping prototypes
to ground truth classes. Data from subject 1 was not used in
the results, because it has already been taken into account
for determining the system parameters. In Fig. 4 we present
as an example the matching matrix for the data of subject 7.
For each matching matrix we calculated the ratio of the
maximum occurring value in each row to the total number
of elements in this row. The resulting values are averaged
over all rows. Analogously we calculate the corresponding
ratio for each column. The resulting values are presented
in Table II. In the last row we present the mean values
for all subjects. On average the assignment of a posture
to one prototype was achieved in 91% of cases while an
unambiguous assignment of a prototype to a posture was
obtained in 86% of cases. In addition, we present the number
of prototypes found for each subject in Table II. On average
our proposed method discovers 15.57 postures, which is very
close to the 16 postures contained in the data.

VI. CONCLUSIONS, DISCUSSION AND OUTLOOK

We designed and implemented a framework for monitor-
ing sitting behavior in an unsupervised manner. Based on
the pressure distribution acquired from a pressure mat we
generate prototypes of sitting postures. The prototypes are
stored in a database and serve as comparison reference for
classifying incoming pressure data. The system performs in
real-time and relies on only few system parameters, which

Fig. 4. Matching matrix obtained from the data for subject 7. Comparing
for example the confused postures 6 and 8 in Fig. 2 reveals that they are
indeed similar.

were adjusted in a preliminary step. To characterize the
classification performance of the system, a posture experi-
ment has been conducted. On average our proposed method
discovers 15.57 postures for all subjects, which reflect the
16 postures that occurred in the experiment well. On average
the assignment of a posture to one prototype was achieved
in 91% of cases while an unambiguous assignment of a
prototype to a posture was obtained in 86% of cases. These
promising results suggest that the presented framework is
feasible for monitoring sitting behavior. Possible applications
can utilize the captured set of postures and evaluate sitting
dynamics over time. In one scenario a feedback could be
provided to the user showing the posture prototypes and the
amount of time these postures were taken by the user. This
would allow the user to quantify the risk for developing lower
back pain, i.e. the amount of time a user took fixed postures
and prolonged sitting. In another application scenario the
sitting dynamics could by investigated by analyzing the
amount of posture changes related to working conditions. As
a result, the sitting dynamics could indicate comfort, physical

TABLE II
OVERALL PERFORMANCE IN MAPPING PROTOTYPES TO GROUND TRUTH

CLASSES BASED ON THE MATCHING MATRICES FOR THE SUBJECTS 2–8.
FOR EACH MATCHING MATRIX WE CALCULATE THE RATIO OF THE

MAXIMUM OCCURRING VALUE TO THE TOTAL NUMBER OF ELEMENTS IN

THIS ROW (CLASSIFICATION RATIO). ANALOGOUSLY WE CALCULATE

THE CORRESPONDING RATIO FOR EACH COLUMN (GROUND TRUTH

RATIO). THE LAST COLUMN CONTAINS THE NUMBER OF PROTOTYPES

FOUND FOR EACH SUBJECT (#PT).

Subject Classification Ratio Ground Truth Ratio #PT

2 0.93 0.81 14
3 0.89 0.87 16
4 0.87 0.91 18
5 0.91 0.90 17
6 0.88 0.92 17
7 0.95 0.72 12
8 0.95 0.90 15

mean 0.91 0.86 15.57
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Fig. 2. Examples of pressure patterns for the 16 postures recorded during the posture experiment: Sitting upright, default posture (1), lean left (2), lean
right (3), lean back (4), lean front (5), left over right leg, knees touching, upright (6), right over left leg, knees touching, upright (7), left over right leg,
knees touching, lean back (8), right over left leg, knees touching, lean back (9), sitting on leading edge (10), lie (11), slouching (12), left over right leg,
foot on knee, upright (13), right over left leg, foot on knee, upright (14), left over right leg, foot on knee, lean back (15), right over left leg, foot on knee,
lean back (16).

Fig. 3. Classification results for subject 7 as an example: each of the 16 ground truth classes is represented by a colored bar and a corresponding class
label shown below the x-axis. E.g., in the beginning the ground truth class changes from 1 to 2, separated by a transition phase. The classification result
is given by the curve showing the prototype assigned by the unsupervised system over time.

wellness or even affective states like stress. Both scenarios
can help to achieve and maintain a healthy sitting behavior.

In future work we will investigate a real-life office scenario
to evaluate the system performance in a more naturalistic
setting. The same measurement setup will be used together
with a coarse labeling performed by each subject. This
will allow to investigate how well the automatically found
postures reflect the daily routine of the user related to healthy
sitting behavior.
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