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Abstract—Loss of alertness can have dire consequences
for people controlling motorized equipment or for people in
professions such as defense. Electroencephalogram (EEG) is
known to be related to alertness of the person, but due to high
level of noise and low signal strength, the use of EEG for such
applications has been considered to be unreliable. This study
reports the fractal analysis of EEG and identifies the use of
maximum fractal length (MFL) as a feature that is inversely
correlated with the alertness of the subject. The results show
that MFL (of only single channel of EEG) indicates the loss
of alertness of the individual with mean (inverse) correlation
coefficient = 0.82.

I. INTRODUCTION

Alertness deficit is a major problem where the opera-

tor is monitoring powered equipment or is responsible for

control of complex situations. It can lead to catastrophic

consequences for people driving a car, monitoring power

plant, and for air traffic controllers. Number of studies in

past have shown that retaining a constant level of alertness

is difficult or impossible for operators of motorized systems

[5]. Attempts have been made to measure alertness using

mechanical sensors and analysis of facial video. Large inter-

subject variability and variability in the expressions across

demographics, gender and age groups makes such techniques

very unreliable. The unreliability is also due to issues of

lighting conditions and movement of the subject.

Electroencephalogram (EEG) is the recording of the elec-

trical activity in the brain. Numbers of researchers have

identified the relationship of EEG with changes in alertness,

arousal, sleep and cognition [12], [13]. One shortcoming of

the use of EEG in real-world application is the associated

clumsiness due to the use of gel with the electrodes and

number of wires attached to the person, often in a car or

in the workplace. Jung et al. have developed a wireless

system that uses dry electrodes and can be kept in the regular

looking cap of the individual [15]. Such a system makes it

suitable for being used on a routine basis. Study by Jung

et al. [3], [5] have estimated alertness of people driving a

virtual automobile using EEG. Using the power spectrum of

8 channels of EEG and classified using a neural network, it

was demonstrated that EEG could be used to identify loss

of alertness.

One shortcoming with biosignals such as EEG is the very

low signal to noise ratio. The typical signal strength of
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EEG signal is of the order of 1 micro-volt, and often the

strength of artifacts and noise may be much greater than

this. Artifacts such as electro-ocular gram (EOG) can often

be an order of magnitude greater, making the use of EEG for

automated analysis difficult and unreliable. Using wireless

dry electrodes reduces the signal quality further due to the

lack of gel that is rich in ions.

Earlier study by the author [5] has the mean correlation

of 0.76 between measured alertness and as predicted using

8 channels of EEG. While that study has demonstrated the

possibilities of the use of EEG in automobile or workplace

environment, this accuracy may not be enough for a reliable

automated system. There is also the need to reduce the

number of channels because eight electrodes can make the

system cumbersome and complex, even when there are no

wires. One option is to identify features of EEG that are

resilient to noise, and are reliable indicators of alertness

of the person. The most commonly used indicator of the

strength of bioelectric signals such as EEG is root mean

square (RMS) or power spectral density (PSD). Both these

simple measures are effective when the signal strength is rel-

atively high compared with the background activity. Changes

in RMS and PSD are a good indicator of the change in the

overall activity. However these are not effective when the

strength of the signal is weak.

Researchers have reported that EEG waveforms corre-

sponding to different physio pathological conditions can be

characterized by their complexity [3], [7]. One measure of

complexity of a signal is the fractal dimension, (FD) which is

a global property of the signal. Studies by Liu et al.[6] have

demonstrated the fractal nature of EEG. These studies have

determined changes in FD with various levels of handgrip

force. Studies by the authors have also determined the fractal

nature of other biosignals such as Electromyogram (EMG),

where they have identified the relationship of FD with the

size of the muscles. Work by the authors has also revealed

the use of maximum fractal length (MFL) of biosignal as a

measure of the signal strength [10]. Work by Oskoei and Hu

[16] has compared number of different features of bioelectric

signals when the signal is sparse and the signal strength is

not high, and their work has identified wavelength as the

most accurate measure of the strength of the signal when

studying sEMG. Unfortunately, such a technique is also not

noise resilient.

This paper reports the experimental study of the maximum

fractal length (MFL) of EEG and measures the changes of

these features against alertness. MFL is similar to wavelength

but is on the decibel scale and is based on the fractal
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properties of the signal. It is proposed that MFL be an

estimate of the operator’s global level of alertness. The

correlation between MFL of the EEG signal and the task

performance measure for three subjects has been reported.

The results indicate that MFL is linearly correlated with the

fluctuations of the subject’s task performance and putative

alertness level with mean inverse correlation coefficient of

0.82 compared with 0.76 achieved using power density of

EEG, tested on the same data. Further, this correlation is

achieved with the use of only one channel of EEG compared

with eight channels in the earlier studies by the author.

II. BACKGROUND

Bio-signals such as EEG are a result of the summa-

tion of action potentials that travel through tissues and

undergo spectral and magnitude compression. Burst within

burst behaviour of these signals in time has the property

that patterns observed at one sampling rate are statistically

similar to patterns observed at lower sampling rates[6]. These

patterns suggest that EEG has self-similarity. Researchers

have studied fractal methods to characterize normal and

pathological signals[4].

When the density of the action potential is high, there

is substantial overlap and features such as RMS and PSD

are an indicator of the density of the action potential, and

thus a measure of the strength of the activity in the vicinity

of the electrodes. By measuring the change in the feature,

the impact of the background noise is largely eliminated.

However, these features are not suitable when the number of

action potentials is small and the signal is sparse.

Inspection of EEG recorded from the Cz and midway

between Pz and Oz locations demonstrates that the signal

is sparse. This paper recommends the use of wavelength of

the signal to identify the singularities that corresponds with

the number of action potentials. To reduce the impact of

background noise and action potentials from distant sources,

the logarithmic value of the wavelength is considered. The

logarithmic value of the wavelength also corresponds with

the maximum value of the fractal length, the length of the

signal at the smallest scale.

The authors propose a new feature, the maximum length

of the signal i.e., MFL as a measure of the alertness

changes. Based on the experimental results, this research has

discovered that maximum fractal length (MFL) measured as

the absolute value of the length of the signal at the lowest

scale follows the small changes in activity or alertness levels.

Based on this, it is proposed that MFL, a novel feature, as

a measure of small changes in EEG in relation to the level

of alertness. One obvious application of these properties of

EEG is the identification of small changes to determine the

level of alertness using EEG recordings.

III. METHODS

A. Subjects

Three healthy subjects (aged from 18 to 34) participated

in a dual-task simulation of auditory sonar target detection.

All had passed the standard Navy hearing tests or reported

having normal hearing. Each subject participated in three or

more simulated work sessions that lasted 28 minutes. Each

participant was given an oral and written summary of the

experimental protocol.

B. Alertness Measure

Auditory targets were classified as Hits or Lapses de-

pending on whether or not the subject pressed the auditory

response button within 100 ms to 3000 ms of target onset.

To quantify the level of alertness, auditory responses were

converted into local error rate, defined as fraction of targets

not detected by the subject (i.e., lapses) within a moving

time window. A continuous measure, local error rate, was

computed by convolving an irregurlarly spaced performance

index (hit = 0/ lapse = 1) with a 95 s smoothing window

advanced through the performance data in 1.64s steps.

Each error rate time series consisted of 1024 points at 1.64

s intervals. Error rate and EEG data from the first 95 s of each

run were not used in the analysis. For each window position,

the sum of window values at moments of presentation of

undeteced (lapse) targets was divided by the sum of window

values at moments of presentation of all targets. The window

was moved through the session in 1.64s steps, converting the

irregularly-sampled, discontinuous performance record into a

regularly-sampled, continuous error rate measure within the

range (0,1).

C. EEG recording and processing

EEG data were recorded at a sampling rate of 312.5 Hz

from two midlines sites, one central (Cz) and other midway

between parietal and occipital sites (Pz/Oz), using 10 mm

gold-plated electrodes located at sites of the Inernation 10-

20 system, referenced to the right mastoid. EEG data were

first preprocessed using a simple out-of-bounds test (with

a ±50µV threshold) to reject epochs that were grossly

contaminated by muscle and /or eye-movement artifacts.

Moving averaged spectral anlysis of the EEG data was then

accomplished using a 256-point Hanning-window with 50%

overlap. Windowed 256-point epochs were extended to 512

points by zero-padding. Median filtering using a moving

5s window was used to further minimize the presence of

artifacts in the EEG records. Two sessions from each from

the three of the participants were chosen for analysis on the

basis of their including more than 50 detection lapses.

D. Experimental procedure

Experimental procedure was designed in order to de-

termine the level of alertness from EEG recordings. Each

subject participated in three or more 28-min experimental

sessions on separate days. During the experiment, the partici-

pants mimicked audio sonar target detection. The participants

were asked to respond to given auditory commands. The

subjects pushed one button whenever they detected an above-

threshold auditory target stimulus (a brief increase in the

level of the continously-present background noise). To max-

imise the chance of observing alertness decrements, sessions

wer conducted in a small, warm and dimly-lit experimental
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chamber, and subjects were instructed to keep their eyes

closed.

The experiments were conducted at Swartz centre and have

been reported in other publications [3], [5]. This experimen-

tal data was obtained from Swartz Center for Computational

Neuroscience, Institute for Neural Computation, University

of California, San Diego [3], [5].
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Fig. 1. Computation of Maximum Fractal length and Fractal dimension

E. Data Analysis

For the sake of comparison, MFL, FD and PSD values

were computed for all the recordings and these were cor-

related with the detection lapses (error data) to determine

which of these techniques was suitable for identifying the

lack of alertness. The FD was calculated using Higuchi’s

algorithm [2], [11]. The MFL was determined based on the

value of the length at the lowest scale as shown in the Fig.1.

The results of the experiments were analyzed statistically to

determine the alertness levels in relation to the small changes

in EEG using the correlation method. MFL and FD were

computed from the EEG data using a moving window in

steps of 1.64s and were analysed to determine the correlation

with the local error rate. The MFL and FD were fitted to the

data points using polynomial fit for each session.

IV. RESULTS AND OBSERVATIONS

Fig.2 and Fig.3 show the plot of correlation between the

fractal dimension, MFL and error rate function for channel 1

and channel 3 respectively. From the plots, it is observed that

using fractal features it is reliable to determine or indicate

the level of alertness. The fractal features were correlated

(negative) with corresponding local error rate to determine

the alertness measure. The negative correlation coefficients

between the MFL & FD with Error function is shown in

Table I. The results (Table I) demonstrate that the fractal

features and local error rate have high negative correlation

coefficients (Mean = 0.82/SD = 0.028).

TABLE I

CORRELATION COEFFICIENTS FOR MFL AND LOCAL ERROR RATE

Experiment Nos Correlation coefficient

MFL FD PSD

Subject A - No.3648 -0.84 -0.76 +0.87

- No.3674 -0.80 -0.73 +0.73

Subject B - No.3654 -0.83 -0.76 +0.83

- No.3656 -0.81 -0.73 +0.76

Subject C - No.3665 -0.80 -0.73 +0.76

- No.3673 -0.79 -0.71 +0.70

The results indicate that MFL is linearly and inversely

correlated with the fluctuations of the subject’s task per-

formance and putative alertness level with mean negative

correlation coefficient of 0.82. It is also observed that other

features such as fractal dimension and PSD also correlate

with the subject’s task performance, but to a lesser degree.

The correlation accuracy of FD was 0.74 while that of PSD

was 0.77.
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Fig. 2. Plot of FD and MFL (during session no. 3654) inversely correlated
with the local error rate using polynomial fit(X label = Samples).

The data was also analyzed for the intra session variations

for the different participants as shown in the bar plot (Fig.4).

This bar plot shows that the negative correlation coefficients

are more similar in two sessions. It suggests that the MFL

is reliably correlated with error function in two sessions.

The alertness changes are reliably measured during the two

sessions using the minimum number of channels (in this case

two channels).
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Fig. 3. Plot of FD and MFL (during session no. 3654) inversely correlated
with the local error rate using polynomial fit(X label = Samples).

Fig. 4. Bar plot to determine the intra session changes for different
participants.

V. CONCLUSION

This study has identified changes in the maximum fractal

length (MFL) of EEG recordings in response to the changes

in alertness of the subject. This study has identified that in

comparison with PSD and FD, MFL correlates best with the

alertness of the subject. It has also been found that with

only one scalp EEG channel, the system is able to predict

the changes in alertness level of the subjects with a negative

correlation coefficient of 0.82. The outcomes of this study

can be extended and would be useful for developing non-

linear models and analysis tools for EEG and other similar

biosignals.
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