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Abstract— Echography is a commonly used modality for
prostate imaging. Prostate segmentation is the first step in
analyzing echographic prostate images. Because of the nature
of these images, traditional local image processing operators are
inadequate for finding the prostate boundary. Most automated
segmentations described in literature require user interaction
for contour initializing or editing [1]. Also shape templates are
applied as prior knowledge [1]. In this paper, an automatic
segmentation method is presented, based on prostate specific
image granulation and image intensity. First, a granulation
detector is used to extract granulation. Subsequently, the
Hessian is adopted to evaluate granulation shape and intensity
for the extraction of the prostate-specific dot pattern. This
dot pattern is used to construct the contour initialization.
A smooth contour model (discrete dynamic contour; DDC)
is evolved from this initialization to the final contour. The
guiding vector field for the DDC deformation is the gradient
vector flow field calculated from an edge map of the original
image. The scale of the relevant edges (large compared to
granulation) is estimated from the prostate-specific dot pattern.
Comparison of automated segmentations with clinical expert
manual segmentations reveals a mean sensitivity and accuracy
of 0.90 and 0.93, respectively.

I. INTRODUCTION

Prostate cancer is the most prevalent cancer and the second

highest cause of cancer death in Western men [2] [3] [4] [5].

At present, physical examination (digital rectal examination,

DRE) and blood analysis (prostate specific antigen, PSA)

are the only non invasive ways to raise prostate cancer

suspicion [3] [4]. Since only the dorsal part of the prostate

can be investigated by DRE and since also benign prostate

hypertrophy increases PSA levels, the diagnosis needs to be

confirmed by distributed biopsies.

It is highly desirable to develop an imaging technique for

prostate cancer detection. This would allow early diagnosis

in a non invasive way and the risk for misdiagnosis (sample

error) would be reduced. Easy treatment follow-up and more

conservative surgery (instead of radical prostatectomy) would

also become possible. Transrectal ultrasound (TRUS) is a

useful modality for prostate imaging: it is cost efficient,

offers high spatial and temporal resolution and is already

used in clinical practice for biopsy guiding and prostate

volume estimation. Moreover, improvements have been made

recently in ultrasound contrast agents (UCA’s; microbubbles)

and indicator dilution theory might offer a way to extract
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local perfusion properties from dynamic contrast enhanced

echography of the prostate. These perfusion properties can

indicate the presence of cancer related microvascular growth.

Prostate segmentation would be useful both to define the

region of interest (ROI) for indicator dilution curve analysis

and to estimate the prostate volume. Unfortunately, manual

prostate segmentation is a tedious task and an automated

approach is desirable.

Echographic contrast is based on tiny differences in

acoustic impedance. As a consequence, echographic images

are very noisy (speckle) and difficult to segment. Dedi-

cated prostate segmentation methods include edge based

approaches using prostate shape models to put the initial

contour near relevant edges [1]. Also semiautomatic ap-

proaches have been proposed which enhance the image

edges and require the user to connect the relevant ones [6].

Other semiautomatic approaches require (partial) initializa-

tion of the contour or contour editing [7]. Also statistical

approaches have been proposed. Among these are several

Bayesian approaches [1] and Gabor filtering, which extracts

prostate features from the image and fits a template on

these in a multiscale approach. Furthermore, methods which

fit shape templates on prostate specific granulation have

been investigated [6] and work has been done to construct

smooth contours using level set evolution or discrete dynamic

contours (DDC) in order to deal with missing edges [1].

Echographic speckle patterns are related to tissue mor-

phology. In this paper, an algorithm is proposed that detects

prostate specific granulation to initialize a DDC. The DDC

is evolved to a final segmentation under edge guidance. This

approach combines the good prostate localization of speckle

based methods with the high edge accuracy of edge detectors,

in a fully automatic segmentation.

II. DATA ACQUISITION

TRUS data was obtained with informed consent from several

subjects referred for radical prostatectomy at the Academic

Medical Center in Amsterdam (Netherlands). Data was ac-

quired using a clinical ultrasound scanner (Philips iU22)

equipped with a transrectal C8-4v probe at 4 Mhz.

In this paper, prostate segmentation from single frames

recorded in fundamental mode is discussed. For certain appli-

cations (e.g. indicator dilution curve analysis), dynamic data

is needed. Resegmentation and/or contour tracking would

enable following the contour in time.

III. PROSTATE SEGMENTATION

The proposed algorithm for prostate segmentation can be

divided in two main parts, shown schematically in Fig. 1.
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Fig. 1. Segmentation block scheme.

Since the prostate is a gland, it has a typical glandular

morphology, which in ultrasound results in a regular dot-

pattern.

Part 1 of the algorithm is dedicated to extracting the

granulation from a fundamental prostate image and to distin-

guish prostate dots from non-prostate granulation based on

shape and intensity. Based on the prostate dots, a contour is

initialized.

In part 2 of the algorithm the spacing of the prostate

dot pattern is used. The original image is blurred to such

an extent that granulation is blurred out. In the resulting

image only large scale edges including (parts of) the prostate

contour remain. An edge guiding vector field is calculated

from this blurred image and used to evolve a DDC, which

takes the initial contour as a starting point, to a final contour.

The DDC model has a certain smoothness that enables it

to bridge regions in which there is no proper edge guiding

and thus solves the problem of missing parts of the prostate

contour in the original image.

IV. PART 1: CONTOUR INITIALIZATION

A. Preprocessing

Preprocessing steps are taken to enhance the granulation of

the prostate image [6].

First, median filtering with a 5 × 5 window is applied

to the original image f(x, y). This is about the granulation

size. This new image, which is cleaned of impulsive noise,

is referred to as fmf (x, y).

Subsequently, fmf (x, y) is tophat transformed using a

18 × 18 octagon structuring element (several times the

granulation size). Tophat filtering removes image fluctuations

smaller than the structuring element size. By subtracting the

tophat filtered image fmf,th(x, y) from the original image

f(x, y), intensity fluctuations of low spatial frequency are

removed (Fig. 2).

Fig. 2. Original prostate image f(x, y) and preprocessed version I(x, y).

B. Difference of Gaussians

In [8] the difference of Gaussian (DoG) kernel is proposed

to detect granulation of a certain size. The DoG is defined

as the difference between two (unnormalized) Gaussians and

given by

DoGσ,γ(x, y) =
Ac

γ
e
−

x
2+y

2

2γ2σ2 − Ase
−

x
2+y

2

2σ2 , (1)

in which Ac and As are constants related to the (narrow) cen-

ter Gaussian and the (broad) surround Gaussian, respectively.

The variance of the center Gaussian is a factor γ2 smaller

than the variance of the surround Gaussian. In literature, it

is customary to take γ = 0.5.

The DoG can be used as a detector for granulation that fits

the center Gaussian. In order to avoid the undesired negative

flanks where granulation is detected, only the positive part

of the convolution of the DoG with the preprocessed image

I(x, y) is taken. This is given as

uσ,γ = [I ∗ DoGσ,γ ]+, (2)

in which, for convenience, the position coordinates (x, y) are

omitted. The same is done in the rest of this paper.

uσ,γ is an image in which granulation is enhanced depend-

ing on its local contrast. Since in the investigated images the

prostate area is darker than the surrounding tissue, prostate

granulation can specifically be enhanced by normalizing the

dot image uσ,γ by the local image intensity, which is given

by

sσ = I ∗ Gσ, (3)

in which Gσ is a normalized Gaussian with standard devia-

tion σ: the standard deviation of the surround Gaussian. The

intensity normalized image is now given as

vσ,γ =
uσ,γ

Csσ + 1
, (4)

in which C is a constant representing the degree of normal-

ization. C is taken equal to 9
max(sσ) ; the maximal suppression

is therefore a factor 10.

C. Hessian dot evaluation

The DoG granulation detector enhances dots as well as line

segments of the appropriate width, whereas we are only

interested in the dots in the prostate region.

The second order differential structure of an image gives

important information about dot-like and line-like structures

[9]. In order to evaluate the local dot shape of vσ,γ , a Hessian

matrix is constructed at each pixel position (x, y):

H(vσ,γ) =

[

∂2vσ,γ

∂x2

∂2vσ,γ

∂xy
∂2vσ,γ

∂xy

∂2vσ,γ

∂y2

]

. (5)

These second order derivatives must be calculated on the

right scale. As an example,
∂2vσ,γ

∂xy
is calculated as

∂2vσ,γ

∂xy
=

∂2

∂xy
(vσ,γ ∗ Gγσ)

=
∂2Gγσ

∂xy
∗ vσ,γ , (6)
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Fig. 3. Image λ1 highlights pixels which are part of elongated structures
and image λ2 shows round structures. Image B is a thresholded version of
masked I′. Note the granulation in the eigenvalue images is dark because
only negative eigenvalues are depicted.

in which the convolution after the first equal sign makes

sure the derivative is only sensitive to gradients of the scale

of Gγσ: the scale of the center Gaussian of (1), which

matches the dot size. The second equality holds because

of the linearity of the operators and permits an efficient

implementation.

Since H(vσ,γ) is symmetric, its eigenvalue decomposition

is always defined. If the two eigenvalues are given by λ1

and λ2, for which |λ1| > |λ2|, and the two corresponding

eigenvectors by e1 and e2, respectively, the eigenvector e1

will point in the longitudinal direction of the local granula-

tion and λ1 will indicate how strong the granulation in this

direction is. Since e1 ⊥ e2, λ2 gives the granulation extent

in the direction of the short axis of the granulation (Fig. 3).

We now define the ratio q as

q =
|λ2|

|λ1|
, (7)

For (round) dots |λ1| ≅ |λ2| and q approaches 1; for line-like

structures |λ1| > |λ2| and 0 < q < 1.

Since the second order derivatives of a light dot on a dark

background are negative, we are only interested in negative

eigenvalues.

Not only the granulation shape can be derived from λ1 and

λ2, but also the granulation intensity. We define the product

s as

s = |λ1||λ2|, (8)

which quantifies the intensity of the granulation.

Finally, we combine q and s into I ′ as

I ′ = qs. (9)

I ′ is the prostate dots image, where only bright and round

structures are left.

In regions where the intensity image sσ is dark, weak dots

of uσ,γ are erroneously enhanced by intensity normalization

(4). This can seriously affect the derivation of I ′, showing

bright dots in wrong places. In order to prevent this, I ′ is

set to zero for the lowest 1% of intensity values.

D. Contour initialization

I ′ is converted into a binary image B by thresholding: only

dots of at least 0.1 times maximum intensity are kept (Fig.

3). On this binary image, a distance transform is performed.

If the dot pattern is regular, the most occurring value in the

distance transform will be half the characteristic dot-to-dot

distance. We can therefore estimate half of the dot spacing

distance rc as

Fig. 4. Interconnected regions and smoothed contour of the largest region,
which is taken as prostate contour initialization.

rc = median (d(B)) , (10)

in which d(.) stands for the distance transform. If morpho-

logical dilation is applied to B with a circular kernel of radius

rc, the dots of the pattern are connected (Fig. 4).

The largest interconnected region is then taken. Mor-

phological closing with a circular kernel or radius rc is

performed to fill indentations and holes. Finally, the region is

eroded with the same kernel, so that the region rim coincides

with the outermost dots. The region rim is taken as prostate

contour initialization (Fig. 4) for the following optimization.

V. PART 2: DDC EVOLUTION TO FINAL CONTOUR

A. Discrete dynamic contour model

The DDC model is described in [10] and consists of N
vertices p

i
= [xi, yi], i ∈ 1, 2, ..., N , interconnected by

edges. It is a deformable contour whose shape is influenced

by internal and external forces.

The internal forces can be described by the related internal

energy as

Eint =
N

∑

i=1

α|∇p
i
|2 + β|∇2p

i
|2, (11)

where ∇p
i

and ∇2p
i

are the first and second spatial deriva-

tive of p
i
, respectively. α is referred to as the elasticity

term and β is referred to as the rigidity term. In our datset

α = 0.03 and β = 0.1 give satisfactory results.

External forces are calculated from the image and can be

used to pull the DDC to certain image regions. Once the

desired image locations are put at low energy, the image

forces that guide to these minima are given by

F im = −∇Eim, (12)

in which Eim is the image energy field.

Note from (11) and (12) that the final position of the

DDC is a trade off between optimal contour geometry (as

compact and smooth as possible) and minimization of the

image energy field.

B. Gradient vector field

F im should be a vector field pointing towards the image

edges. We could define F im = |∇f |, but because of the

speckle, strong gradients are found throughout image f and

not only at the prostate contour. The scale of the gradient

operator could again be controlled by Gaussian blurring as
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Fig. 5. Blurred image gradient magnitude |∇f ∗Grc
|, binary edge map e,

and normalized GVF field
u

|u|
, calculated from e, overlaid on the original

image f .

in Eim = |∇f ∗ Grc
|, but since prostate edges are relatively

weak (Fig. 5), this is an unreliable approach.

A solution is offered by the gradient vector flow (GVF)

field in [10]. The GVF vector field u = u(x, y) =
[u(x, y), v(x, y)] can be seen as the equilibrium solution to

the following vector diffusion equations [11],

u(x, y, t) = µ∇2u − |∇e|2(u −∇e),

u(x, y, 0) = ∇e, (13)

in which e is an edge map and u is seen as a function of

space and time, so an estimate of u can be found iteratively;

we use 80 iterations. For e we take the binary edge map

of the blurred image f ∗ Grc
as given by the Canny edge

detector (Fig. 5). As a result, all edges are equally strong.

The parameter µ makes sure that u varies smoothly so a

pull towards the edges is also present far from them. This is

fundamentally different from ∇|∇f ∗Grc
|, which has a Grc

limited range. For sufficient edge pull we take µ = 0.2.

VI. RESULTS

Using the GVF field to guide the dot pattern initialized

DDC, we can converge to the final contour. An example

is given in Fig. 6. To quantify the performance of the

algorithm, the automatic segmentations are compared to

manual segmentation by a clinical expert. In comparing the

automated segmentation to the manual segmentation, we can

define the sensitivity and the accuracy [7] as

sensitivity = TP/(TP + FN) (14)

accuracy = 1 − (FP + FN)/(TP + FN) (15)

in which TP is the number of true positive pixels (pixels

of the automated segmentation that overlap with the manual

one), FN is the number of false negative pixels (pixels that

are part of the manual segmentation but not of the automated

one) and FP stands for the number of false positive pixels

(pixels that are part of the automated segmentation but not

of the manual one).

For the 4 datasets analyzed, the results are summarized in

the table in Fig. 6.

For an image of 300 × 400 pixels the calculation time is

about 1 min on a 4GB RAM 2.53GHz machine. About 45 s

of this time is needed for the Hessian dot evaluation.

VII. DISCUSSION

Our preliminary results confirm the feasibility and accuracy

of the method, although more extensive validation is neces-

sary. However, if the granulation of the echographic images

Image # Sens Acc

1 0.93 0.92

2 0.91 0.87

3 0.95 0.90

4 0.94 0.92

Mean 0.93 0.90

Std 0.015 0.022

Fig. 6. Final segmentation, evolved from the initial segmentation in Fig.
4, and result table.

is clear enough, the granulation detector combined with the

Hessian granulation evaluator extracts relevant granulation

effectively. In this case, a proper granulation-based contour

initialization can be made. If the initialization is near the

relevant edges, the GVF field offers proper edge guiding to

evolve the initial contour to the final contour.

Points of attention for future research include the dot

detector size, which was not tuned to the image under

investigation. A multiscale approach was tested, but it turned

out that combining dot detectors of different sizes does

not improve overall algorithm performance. Nevertheless it

seems relevant to derive the optimal dot detector size from

the image.

Concerning the edge guiding, it might be interesting to

search for alternatives for calculating the GVF field from

a binary edge map. This would permit avoiding the critical

choice of a proper value for µ in (13).
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