
  

  

Abstract—Spine curvature and posture are important to 

sustain healthy back. Incorrect spine configuration can add 

strain to muscles and put stress on the spine, leading to low 

back pain (LBP). We propose new method for analyzing spine 

curvature in 3D, using CT imaging. The proposed method is 

based on two novel concepts: the spine curvature is derived 

from spinal canal centerline, and evaluation of the curve is 

carried out against a model based on healthy individuals. We 

show results of curvature analysis of healthy population, 

pathological (scoliosis) patients, and patients having non-

specific chronic LBP. 

I. INTRODUCTION 

orrect posture and adequate back support are 

important since malposture can add strain to muscles 

and put stress on the spine. Over time, the stress of 

poor posture can change the anatomical characteristics of the 

spine, leading to pressure on blood vessels and nerves, as 

well as rapid degeneration of muscles, discs and joints. All 

of these can be major contributors to back and neck pain, as 

well as headaches, fatigue, and possibly major organs 

dysfunction and breathing problem  0[1]. 

The aim of this study is to investigate a new method for 

spine curvature evaluation. The method is uses CT imaging 

of the spine to give 3D curvature description of the spine, 

which in turn is compared against a model curve of the 

spine. The curves are based on the spinal canal, avoiding 

pitfalls of using bone features for curve estimation. The 

analysis is done against a model so both local and global 

descriptors are examined in a single framework. 

A. Previous work 

Quantitative analysis of spine curvature is important for 

understanding the nature of normal and pathological spine 

anatomy. Several techniques are available. The Cobb 

technique  [2] (Figure 1) is the most established method for 

quantifying spinal curvature in the coronal plane in the case 

of scoliosis deformities as well as in the sagittal plane to 

measure lordosis and kyphosis. Other methods for 

measuring the degree of spinal deformity exist, e.g.  [4],  [5] 

(see  [3] for review of spinal curvature evaluation methods). 

Most of the proposed methods (e.g. Harrison Method  [5],  

Figure 1) are too complex for routine use, and provided only 

2D geometric descriptors of spinal deformity. Studies 

emphasized that 3D descriptors might yield a more complete 

assessment of 3D spinal curvatures  [6]. 

Several methods have been published aiming at an 

segmentation of the spinal canal and spine curvature 
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assessment. Automatic extraction and partitioning of the 

spinal cord in CT images was presented by Yao  [9]. The 

spinal cord was detected by watershed algorithm followed 

by graph search. Vrtovec  [9] presented a method for spine 

curve detection in CT by polynomial model to provide a 

curved planar reformation (CPR) of the spine column, based 

on vertebral bodies. Vrtovec  [11] also present a method for 

quantitative analysis of spinal curvature in 3D from vertebral 

body lines, using geometric curvature and curvature angle.  

Since spine curvature has both local and global 

characteristics (e.g. scoliosis or lordosis, in contrast with 

spondylolisthesis), most methods prove insufficient. Another 

drawback of previous methods is that measurements are 

based on features along the vertebrae bodies. Thus small 

deformation of the vertebra body (e.g. osteophytes) may 

result in miscalculation of the curvature. 

In this paper we present a new method for spine curve 

extraction, based on spinal canal centerline, with a novel 

method for curvature analysis using spine curve model.  

II. METHODOLOGY 

The spine assessment framework components are outlined 

as follows: (1) Segmentation of spine canal based on two 

step segmentation the spinal canal is extracted. (2) Curve 

extraction using the spinal canal segmentation the spine 

curve is found using minimal path algorithm. (3) Curve 

Modeling based on curves extracted from healthy 

individuals. (4) Curvature analysis through curve 

evaluation against the model and assessment of the 

deviations. The implementation was carried in C++ out 

using ITK library.  

A. Spinal Canal Segmentation 

The spinal canal is a tubular object that has sharp edges 

(with the spine), weak edges (with intervertebral disk) and 

no edges (with nerve roots). This makes segmentation of the 
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Fig. 1:  The Cobb (left) and Tangent (right) methods for measuring lumbar 

angle in the sagittal plane. Cobb technique use vertebral endplate lines to 

construct angles. The tangent method is an angle between two lines, drawn 

tangentially to the posterior vertebral body wall of the end vertebrae.  
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canal a difficult problem. Several techniques to extract the 

canal have been suggested  [7],  [8]. We are using a two step 

method for canal segmentation: initial segmentation is 

carried out using morphological region growing technique, 

followed by fine 3D active surface segmentation. This 

method allows very fast (within 2-3 seconds for 400 images) 

initial segmentation followed by fine and accurate adaptation 

of the segmentation to canal shape.  

A seed point for the spinal canal segmentation is found 

using pattern recognition. The detection is carried out on a 

2D image created by fusion of several axial slices that 

account for 10mm (the amount of slices depends on the scan 

parameters) at the superior part of the scan. On this image a 

hole detection algorithm is performed using circle detection 

Hough transform. Of the resulting circles, the most 

appropriate circle is chosen by its morphological 

characteristics and its relation to bone segments on that 

image – a hole at the mid posterior part of the image 

surrounded by bone. The center of the hole is the seed point. 

To extract the initial region on the axial slice (where the seed 

is located), region growing segmentation, based on JSEG 

texture, is performed. If the initial 2D segmentation differs 

significantly from the hole (circle) detected above for seed 

point, then the hole is taken as the initial 2D segmentation, 

although in most cases it is much smaller. Next, the spinal 

canal is segmented by stepwise morphological region 

growing. At each step all neighborhood pixels within 

adaptive thresholds are considered. The candidates are then 

divided into connected components, and the most 

appropriate component (i.e. component with similar size and 

mean HU values) is added to the segmentation. At the end of 

the process leak detection is carried out by checking the size 

of the components at each step, and checking if there is a 

large change of size indicating leakage. 

The next step is a fine segmentation process based on a 

3D discrete deformable model. An initial boundary (a 

simplex mesh) is deformed under internal (shape-based) and 

external (image-based) constraints until an equilibrium is 

reached (see  [12] ,  [13] for reviews). To overcome weak 

edges we adopted a coarse-to-fine approach: first a low-

resolution mesh is deformed until convergence, and then the 

mesh is refined and deformed again but allowing only small 

deformation.  

Mesh deformation is governed by a second order 

evolution equation, which can be rewritten for discrete 

meshes as follows: 
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where α and β are global weights for the internal and the 

external forces respectively. This equation can be discretized 

in time t, using an explicit discretization scheme as follows: 
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 The internal force imposes smoothness constraints on the 

polygonal mesh. External forces were computed along the 

normal of each vertex ‘on the fly’ to allow fast computation. 

We combined both texture edge information and intensity 

information for the computation of the external forces:  

IntensityTexture FF 21 ββ +=Fext  

The texture edge image was based on JSEG (J measure 

based SEGmentation) algorithm  [14]. The basic idea of the 

JSEG method was to separate the segmentation process into 

two stages: color quantization and spatial segmentation. In 

the first stage, quantization algorithm based on peer group 

filtering (PGF) and vector quantization reduces image gray 

to produce a class map. Based on the class map, spatial 

segmentation was performed based on pixel J val   [15]. The 

measure J is defined as 
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Where ST is the within class variance and SW is the total 

variance. For each pixel, its corresponding J value was 

calculated over the local (5x5x5) window centered on this 

pixel. Thus, a J-image was formed. To allow fast 

computation J values were computed only along the normal 

line for each vertex, the edge along the normal was found, 

and the texture force value was the product of the distance of 

the vertex to the edge, and the edge strength.  

The intensity force is based on given range of intensity 

values. Assuming the vertex is within the object, the closest 

point along the normal to be outside the range is considered 

as the edge, and the force magnitude is defined as the 

distance to this edge. 

The Mesh adaptation is carried out until no further 

deformation is observed (i.e. deformation step size is smaller 

than threshold) or 20 iteration have passed, to give final 

spinal canal segmentation (figure 2). 

    
         (a)                           (b)                       (c)          

Fig. 2:  Spinal Canal final mesh segmentation (a), (b), and centerline 

extraction (c). 
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B. Spine Curve Extraction 

The spine canal centerline defines the spine curve in our 

method. We examined few centerline extraction techniques: 

morphological skeletonization, flux driven medial curve, and 

fast marching minimal path extraction. The last method 

proved to be most accurate for our purpose. The method 

requires a speed function to generate an arrival function, 

start and end points, and an optimizer which steps along the 

resultant arrival function perpendicular to the Fast Marching 

front. The speed function used is based on distance 

transform using the spine canal segmentation. The start (end) 

point is defined as the center of the segmentation of its 

topmost (bottom) axial slice. The optimizer used is a 

Gradient Descent Optimizer (Figure 3). 

After spinal canal curve is found, the curve is scaled to 

obtain independent measure curve (e.g. curve that is 

independent of the patient height), and rotated so that the 

anterior-posterior line is oriented on a common axis (the Y 

axis). The scaling and rotating are used to establish patient 

independent coordinate system for the spine curvature.  

As a final step for each curve the curvature and torsion are 

calculates. Intuitively, curvature is the amount by which a 

geometric object deviates from being flat. For curve defined 

as a function r(t) the curvature at a given value of t is: 

3
r
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where r&  and r&&  are first and second derivatives of r(t). 

The torsion of a curve measures how sharply it is twisting. 

And is defines as: 
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Fig. 3.  Spine Model Curve (black line) composed from various curves 

(color lines) of healthy individuals     

C. Spine Curve Modeling 

The spine curve model is created from a set of samples of 

spine curve in 3D of healthy individuals. The modeling 

created from sample of curves of the normal population, 

preprocessed as mentioned above (scaled, and oriented). All 

curves for the model are dimensionless curves, and oriented 

along a common line. All curves have common superior 

point (at the level of T12 inferior endplate), and inferior 

point (at the level of L5 inferior endplate), and oriented to 

the same axis, thus no registration between the curves is 

required. Model curve is created as the median of location of 

all sample curves on cross sections along the curves. The 

model curve’s standard deviation is the calculated standard 

deviation of location of all sample curves from the model 

curve. The model curve’s spine curvature and torsion are 

calculates as the median curvature and torsion of all sample 

curves at each axial cut as well (black and blue lines in 

figure 3). 

D. Spine Curve Analysis  

Individual’s spine curvature as extracted from spine 

imaging is assessed against the model. The curve is 

extracted as describe before. Given a spinal curve after being 

scaled and oriented, the curve is compared to the model. The 

comparison is simple distance measurement of the curves, 

distance measurement of the curvature and torsion (figure 4). 

These values are evaluated compared to the model standard 

deviation. If the curve deviates from the model by more than 

determined factor of standard deviations the curve is said to 

be abnormal.  

  

   
Fig.4: Curve Assessment as viewed on the sagittal plane (left) and coronal 

plane (right). These individuals show curve deviations from the model. The 

top left has very mild hyper lordosis, the bottom left has mild flat back. The 

top right has mild scoliosis, and bottom right has scoliosis. Graphs 

coordinates are normalized, negative values are continuation of the curve 

beyond L5 to the sacrum 

III. RESULTS 

The model was create using 21 individuals that underwent 

CT scan of the abdomen, have no spinal disorders, and have 

no history of low back pain. The images obtained with a 

voxel size in-plane ranging from 0.5 mm to 1.2 mm and a 

slice thickness of 0.9 to 3mm. Each image plane had 512x 

512 voxels with varying number of slices (250–500). The 

processing time was 57-370sec with mean time of 123sec. 

A. Segmentation and Curve Validation  

For the evaluation of our method, especially for the curve 

extraction segmentation, we used canal centerline curves, 

extracted manually by two experienced radiologists of 24 

patients. To obtain inter observer error both radiologists 

extracted the curve of 5 patients extracted. Inter observer 

error average difference was 1.36 ± 1.61 mm. The manually 
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extracted curves were then compared to the algorithm 

automatic extracted curves. The average difference was 

1.70mm, a little higher than the inter observer difference, but 

still well within acceptable range. 

B. Curvature Analysis  

The curvature assessment method was tested on 24 

individuals that underwent CT scan of the abdomen, and 4 

patients with scoliosis. Our main goal was to establish 

correlation between curvature deformities and low back 

pain. Of the 24 individuals:  8 had no history of back pain, 

10 had previous low back pain episode with no specific 

cause, and 6 had low back pain with no specific cause, as 

well as 4 other patients who have clear scoliosis. For each 

case the deviations of the curve from the model were 

calculated. Deviation was above 3 standard deviations are 

registered, and for each curve we count segments of the 

curve that differ from the model by more than 3 standard 

deviations (the results are summarize in table 1). 

The spine curvature assessment method can clearly be 

used to detect and quantify the pathological (e.g. scoliotic) 

spinal curvatures. As can see from the results (Table 1) all 

patients with scoliosis have large deviation from the model 

as expected. It can also be seen that patients with low back 

pain have more deviations of the curve, curvature and 

torsion from the model. These patients were not identified as 

having posture deformations and the deviations are sub-

acute curvature deformation (i.e. deformations are not 

defined as pathologies). This may suggest that there is a 

correlation of posture problems and low back pain. 

IV. DISCUSSION 

The purpose of this study is to present a new method for 

3D quantitative assessment analysis of spinal curvature. 

Spinal deformities may be of local nature, or global nature, 

and may occur in image plane (axial, sagittal and coronal). 

In order to study the properties of such complex structures, 

we use a modeling technique based not on the vertebral 

bodies, which induce inaccuracies, but on the spinal canal. 

The results clearly show that this method is suitable for 

detection and quantification of pathologies. It is also clear 

that there is a correlation between sub-acute curvature 

deformation (i.e. deformation that are not defined as 

pathologies) and low back pain.  Further data is required for 

establishing strong correlation between low back pain and 

curvature deviation, and expansion of the model.  

To conclude, the proposed model based spine curve 

assessment method may improve understanding of spine 

anatomy and aid in clinical quantitative evaluation of spinal 

deformities. Since changes of posture are minor and rare, 

this method may also improve diagnosis of low back pain. 
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TABLE I 

RESULTS OF CURVE ASSESSMENT 

Measurement Type 
Patient Type 

No 

LBP 

LBP 

History 

Current 

LBP 
Scoliosis 

Number of Patients  8 10 6 4 

Curve  

Segments  

 
1 4 4 5 

Percentage  

of patients  
12.5% 30% 33% 100% 

Curvature  

Segments 

  
1 3 3 3 

Percentage  

of patients 
12.5% 20% 33% 75% 

Torsion  

Segments  

 
0 1 1 2 

Percentage  

of patients  
0% 10% 16% 50% 

 

Three types of deviations were examined: curve deviation from the model 

curve, deviation of the curvature along the curve, and deviation of the 

torsion along the curve. For each type of measurement, two values were 

recorded: total amount of deviation segments per patient types, and 

percentage of patients exhibiting deviations. 
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